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Abstract

Nonlinear system identification has always been a challenging problem. The use of kernel methods to solve such problems

becomes more prevalent. However, the complexity of these methods increases with time which makes them unsuitable for online

identification. This drawback can be solved with the introduction of the coherence criterion. Furthermore, dictionary adaptation

using a stochastic gradient method proved its efficiency. Mostly, all approaches are used to identify Single Output models which

form a particular case of real problems. In this paper we investigate online kernel adaptive algorithms to identify Multiple Inputs

Multiple Outputs model as well as the possibility of dictionary adaptation for such models.

Index Terms

Nonlinear adaptive filters, machine learning, nonlinear systems, kernel methods.

I. INTRODUCTION

System identification methods based on reproducing kernel Hilbert spaces (RKHS) are very important in kernel-based

regression methods such as support vector regression [1], [2]. The derived models are essentially for Single Output systems. In

real life, many applications are naturally described by Multiple Inputs Multiple Outputs models (MIMO) [3], which identification
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is achieved using several methods such as neural networks [4]. Online algorithms, e.g. Kernel Affine Projection Algorithm

(KAPA) and Kernel Recursive Least Squares (KRLS) along with the application of a sparsification criterion [5], [6], made a

major step toward online identification by reducing the computational burden [7], [8].

The coherence criterion allows the selection of a subset of past input samples, called the dictionary, which contributes the

most to the prediction model [9]. Using the coherence criterion it has been shown that the size of the dictionary remains finite

with time. Moreover, without dictionary adaptation, elements remain unchanged even if they become less relevant in the model.

This is the reason why in [10], and in the MISO case, we proposed an heuristic to adapt the dictionary elements coupled with

the coherence criterion for the KAPA algorithm.

In this paper, we present online MIMO kernel adaptive algorithms (KAPA and KRLS) coupled with dictionary adaptation.

II. SINGLE OUTPUT VERSUS MULTIPLE OUTPUTS MODEL

A. Multiple Inputs Single Output model

Consider an online identification problem and let un ∈ U ⊂ Rl be the input vector at time step n, and dn ∈ R be the

corresponding desired output. Let κ : U × U → R be a kernel function and H the RKHS associated with it. Considering

ψn(·), a real-valued function that corresponds to the output of the model, for some positive scalar η and monotonic increasing

function Ψ(·), the solution of the following optimization problem. Then,

ψn = arg min
ψ

n∑
i=1

|di − ψ(ui)|2 + ηΨ(‖ψ‖2H)

is, according to the representer theorem [11], [12], given by

yn = ψn(un) =

n∑
i=1

αn,i κ(un,ui).

As can be seen, the model complexity increases with time. To tackle this problem, we briefly introduce the use of the coherence

criterion. At time step n, for a dictionary {uw1 , · · · ,uwm}m�n and any unit-norm1 kernel κ, the coherence µ parameter is

defined as:

µ = max
i 6=j
|κ(uwi

,uwj
)|

A candidate input un is introduced into the dictionary if the following condition is satisfied:

max
j=1···m

|κ(un,uwj )| ≤ µ0

where µ0 ∈ [0, 1[ is a threshold parameter determining the level of sparsity and the coherence of the dictionary. Maintaining

µ < µ0 implies that the dimension of the dictionary remains finite as time n→∞ [9]. Using the coherence criterion to control

1Otherwise, normalize the kernel, by replacing κ(uwi , uwj ) with κ(uwi , uwj )/(κ(uwi , uwi )κ(uwj , uwj ))
1
2 .
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Fig. 1. Multiple Inputs Multiple Outputs model.

the size of the dictionary we get:

yn = ψn(un) =

m∑
i=1

αn,i κ(un,uwi
) (1)

where m� n. The estimation of the model parameters results from an optimization problem.

B. Application to the single-output KAPA problem

We first consider the case of the KAPA algorithm (studied in the linear case in [13] and in the Kernelized APA [14], [15]),

αn = [αn,1 · · · αn,m]t is the solution of

αn = argmin
α
‖α−αn−1‖2 (2)

subject to dn = Hnαn

where dn = [dn · · · dn−p+1]t is the desired output, p is the width of the considered sliding window, and Hn is a matrix whose

(i, j)th element is κ(un−i+1,uwj
) with i = 1 · · · p and j = 1 · · ·m. When p = 1, the Kernel Affine projection Algorithm is

equivalent to the Kernel Normalized Least squares Algorithm (KNLMS) (see for instance [16]).

C. Derivation of the MIMO KAPA problem

The main difference between several MISO models in parallel and a single MIMO model is that in MIMO models all

outputs share the same dictionary. The MIMO model, with l inputs and k outputs, is illustrated in Fig. 1. Let us consider

l time series {u(r)(n)}r=1···l as inputs and let un = [u
(1)
n · · ·u(l)n ]t be the input vector at time step n. Hence, y(j)n is the jth

output of the model, d(j)n = [d
(j)
n · · · d(j)n−p+1]t represents the jth desired output vector and the jth component of the error is

e
(j)
n = d

(j)
n − y(j)n . Given that all the model outputs share the same dictionary, the constraints in (2) become:

d(1)n = Hnα
(1)
n · · · d(k)n = Hnα

(k)
n

where α(j) = [α
(j)
n,1 · · · α

(j)
n,m]t is the jth solution vector and j = 1 · · · k.
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Let, at time step n, Dn = [d(1)n d(2)n · · ·d
(k)
n ] be the desired output matrix, En = [e

(1)
n e

(2)
n · · · e(k)n ] the error matrix and

An = [α
(1)
n α

(2)
n · · ·α(k)

n ] the solution matrix. By analogy to (2), the optimization problem becomes:

An = argmin
A
‖A−An−1‖2F (3)

subject to Dn = HnAn.

Note that ‖ · ‖2F is the Frobenius norm.

III. MULTIPLE OUTPUTS KERNEL AFFINE PROJECTION ALGORITHM (MOKAPA)

Our objective is to find the optimal solution matrix An with online adaptive algorithms. Using the coherence criterion

presented above, at instant n, when a new input un is fed to the model, one of the following two cases occurs:

• maxj=1,...,m |κ(un,uwj )| > µ0

In this case un is not introduced into the dictionary and the Lagrangian is:

J(A,Λ) =‖A−An−1‖2F +1tp (Λ� (Dn −HnA))1k

where � is the Hadamard product, Λ is the matrix of Lagrange multipliers, and 1n a vector of n ones. Finding the

derivatives of the above cost function with respect to Λ and A and setting these derivatives to zero at Λn and An yields

the following two expressions:

2(An −An−1) = Ht
nΛn and Dn = HnAn

Assuming that HnH
t
n is not singular, we get:

Λn = 2(HnH
t
n)−1(Dn −HnAn−1)

The solution matrix is then updated according to:

An = An−1 +Ht
n(εI +HnH

t
n)−1(Dn −HnAn−1)

where we introduced εI as a regularization factor.

• maxj=1,...,m |κ(un,uwj )| ≤ µ0

In this case un is introduced into the dictionary and uwm+1
= un. The size of the matrix Hn is increased by concatenating

the column [κ(un,uwm+1
) · · ·κ(un−p+1,uwm+1

)]t and the solution matrix is updated using the following expression:

An =

An−1

0

+Ht
n(εI +HnH

t
n)−1

(
Dn −Hn

An−1

0

)
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We call these last expressions Multiple Outputs Kernel Affine Projection Algorithm (MOKAPA). Note that when choosing

p = 1, the MOKAPA is called the Multiple Outputs Kernel Normalized Least Mean squares algorithm (MOKNLMS).

IV. MULTIPLE OUTPUTS KERNEL RECURSIVE LEAST SQUARES ALGORITHM (MOKRLS)

In this section, we briefly present the KRLS algorithm extended to the multiple outputs case, and coupled with the coherence

criterion to perform selection of the dictionary elements. In the single output case, the KRLS algorithm takes into consideration

all the previous n inputs to the model [17], [18], and minimizes

αn = arg min
α
‖dn −Hnα‖2 + ξαtKnα.

Hn becomes a n×m matrix where the (i, j)th entry is κ(ui,uwj
) and the (i, j)th entry of the m×m Gram matrix Kn is

κ(uwi
,uwj

).

In the multiple output case, and as in the previous section, all outputs share the same dictionary, then Hn and Kn are the

same for all outputs. Assuming that P n = (Ht
nHn+ ξKn)−1 exists, it is also shared by all outputs (ξ > 0 is a regularization

coefficient). At iteration n, when a new input vector is fed to the model, one of the two following cases occurs:

• maxj=1,...,m |κ(un,uwj
)| > µ0

In this case, un is not introduced into the dictionary, and a new line hn = [κ(un,uw1) · · ·κ(un,uwm)] is introduced into

the matrix Hn−1. It can be shown that the solution matrix An can be updated using the following expressions:

An = An−1 +
P n−1h

t
n

1 + %

(
[d(1)n · · · d(k)n ]− hnAn−1

)
P n = P n−1 −

P n−1h
t
nhnP n−1

1 + %

where % = hnP n−1h
t
n.

• maxj=1,...,m |κ(un,uwj
)| ≤ µ0

In this case, un is introduced into the dictionary. Hence, the size of the dictionary is increased by one to become m+ 1.

The updates of the solution matrix and of the matrix P n are achieved in two phases. In the first phase, we apply the

same expression as above to obtain Ãn and P̃ n. In the second phase, the updates are obtained as follows :

An =

Ãn

0k

+

−P̃ nh
t
n

1/h0

 [d
(1)
n · · · d(k)n ]− hnÃn

1− %̃

P n =

P̃ n 0tk

0k 0

+
1

1− %̃

−P̃ nh
t
n

1/h0

 [−(P̃ nh
t
n)t 1/h0]

where %̃ = hnP̃ nh
t
n and h0 = κ(un,un).
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TABLE I

EXPERIMENTAL SETUP AND PERFORMANCE, WITH µ0 = 0.3 AND ν0 = 0.05

Output#1 Output#2 Output#3 Output#4 Output#5 Output#6 Output#7 Output#8

NMSE (Without adaptation) 0.21691 0.11548 0.62603 0.03242 1.00880 0.69114 1.03240 1.20270

MOKAPA NMSE (With adaptation) 0.10505 0.07601 0.25562 0.022164 0.50270 0.44475 0.52830 0.69226

Decrease 51.57% 34.18% 59.17% 31.63% 50.17% 35.65% 48.83% 42.44%

NMSE (Without adaptation) 0.39397 0.43833 0.26720 0.70404 0.077164 0.10241 0.07745 0.12580

MOKRLS NMSE (With adaptation) 0.19617 0.25243 0.05901 0.48677 0.03004 0.03999 0.029872 0.03654

Decrease 50.21% 42.41% 77.91% 30.86% 58.07% 60.95% 61.43% 70.96%

The previous expressions used to update the solution matrix are called the Multiple Outputs Kernel Recursive Least Squares

algorithm (MOKRLS), and correspond to the extension to the MIMO case of equations presented in [18].

V. DICTIONARY ADAPTATION FOR MIMO MODELS

Without adaptation, a dictionary element, once introduced into the dictionary, remains unchanged even if it becomes less

relevant in the model. In a previous work and in the MISO case, [10], the importance of dictionary adaptation was revealed

and the gain using adaptation was obvious. We now consider the dictionary elements as model parameters to be adapted jointly

with the matrix An.

The adaptation technique is based on the stochastic gradient of the instantaneous quadratic error w.r.t. the dictionary elements.

In the case of a MIMO model, the error at time n is a vector en = [e
(1)
n e

(2)
n · · · e(k)n ]t. Dictionary adaptation is achieved

using the gradient of the `2 norm of en with respect to the dictionary elements so as to reduce the instantaneous quadratic

error. Each dictionary element uwi
is modified to become uAwi

according to:

uAwi
= uwi − νngwi

(4)

where gwi
= ∇uwi

‖en‖2 and νn is the gradient step size that should be chosen to adapt all the dictionary elements without

violating the coherence criterion. In other words, a coherent dictionary must remain coherent after the adaptation of its elements.

Since ‖en‖2 = (d
(1)
n − y(1)n )2 + · · ·+ (d

(k)
n − y(k)n )2, then gwi

= −2
(
e
(1)
n α

(1)
n,i + · · ·+ e

(k)
n α

(k)
n,i

)∂κ(un,uwi
)

∂uwi
.

When we consider a Gaussian kernel function of the form κ(ui,uj) = f(‖ui − uj‖2) = exp(−‖ui − uj‖2/2σ2), σ its

bandwidth, then ∇uwi
κ(un,uwi

) = 1
σ2 (un − uwi

)κ(un,uwi
), which yields

gwi
=
−2

σ2

(
e(1)n α

(1)
n,j + · · ·+ e(k)n α

(k)
n,i

)
κ(un,uwi

)(un − uwi
).
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Adaptation must be done while satisfying the coherence criterion and this could be achieved by choosing the appropriate νn

to adapt all the dictionary elements2. Thus, after adaptation, the whole dictionary must satisfy:

max
i 6=j
|κ(uAwi

,uAwj
)| ≤ µ0. (5)

Considering, δu = uwi
− uwj

and δg = gwi
− gwj

, the expressions (4) and (5) lead to:

f(‖δu− νn δg‖2) ≤ µ0. (6)

Approximating the previous expression with a Taylor series around νn ∼ 0, we obtain the following inequality:

−
(
2‖δg‖2ν2n − 2νnδutδg)f (1)(‖δu‖2

)
+ µ0 − f(‖δu‖2) ≥ 0,

where f (1)(·) is negative for the Gaussian kernel. If the discriminant ∆ < 0, there is no constraint on the choice of νn.

If ∆ ≥ 0, then the roots {νi,j−, νi,j+} of the corresponding equality define intervals of admissible values of νn such that

νn ∈ ]−∞, νi,j−]∪ [νi,j+,+∞[. The adaptation requires the resolution of m(m− 1)/2 quadratic equations at each iteration,

with a low computational cost.

We initially select a reference step size ν0 > 0, as commonly done for adaptive algorithms with a fixed step size. By

considering all the (νi,j−, νi,j+) pairs between all couples of elements of the dictionary, then νn is selected using the following

heuristic:

• if max
i,j

νi,j+ ≤ 0 ⇒ νn = ν0

• if 0 ≤ min
i,j

νi,j− ≤ ν0 ⇒ νn = min
i,j

νi,j−

• if 0 ≤ ν0 ≤ min
i,j

νi,j− ⇒ νn = ν0

• if 0 ≤ min
i,j

(νi,j−)+ ≤ ν0 ⇒ νn = min
i,j

(νi,j−)+

• if 0 ≤ ν0 ≤ min
i,j

(νi,j−)+ ⇒ νn = ν0

where (νi,j−)+ indicates the positive value of νi,j−.

VI. EXPERIMENTATION

In this section, eight EMG Physical Action Data Sets taken from [19] (subset 1 - normal - running) and used as inputs. We

only considered the first 2000 samples of the time series. The Gaussian kernel with 2σ2 = 0.35 (value selected with a rough

grid search) is used and the performance criterion is the Normalized Mean Squared Error (NMSE) estimated over the last 500

2One may also consider adapting each element of the dictionary with a different νn. However, this approach drastically increases the computational cost,

and thus requires the derivation of an efficient heuristic.
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samples of each output signal using the formula:

NMSE(i) =

∑2000
n=1501(d

(i)
n − y(i)n )2∑2000

n=1501(d
(i)
n )2

(7)

We selected the parameter settings in such a way that the final sizes of the dictionaries are almost equal and we compared

the NMSE to highlight the gain using dictionary adaptation. The selected coherence criterion is µ0 = 0.3 and the reference

step size ν0 = 0.05. First, MOKAPA (p = 3, ε = 0.09) is used to identify a model with eight outputs. With dictionary

adaptation, the final size of the dictionary is 148 elements versus 151 elements without adaptation. Finally, MOKRLS is used.

With dictionary adaptation, the final size of the dictionary is 376 elements which easily compares to 382 elements without

adaptation. The NMSE for all outputs is shown in table I. Due to space limitations, figures 2 and 3 show only the learning

curves for output#1 using MOKAPA and MOKRLS.

The MOKRLS is also tested with the approximate linear dependence criterion (ALD) [17] with a sparsification threshold

set to 0.856 leading to a comparable dictionary size of 378 elements. As illustrated in figure 3, the curves without adaptation

are almost superimposed, while the dictionary adaptation along with the coherence criterion shows an obvious gain.

VII. CONCLUSION

In this paper, we explored the possibility to apply online kernel adaptive algorithms for MIMO models along with dictionary

adaptation. The obtained results reveal the decrease of the NMSE. For future works, we will extend this work to other kernel

functions and adaptive algorithms.
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