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1. Introduction11

Many applications in real-life problems require a constrained solution, including pattern recognition12

problems. For instance, denoising or deblurring a gray-level image should result into an image of the same13

type [1]. In unmixing signals or images, e.g., deconvolution, as well as in estimating some spectral feature,14

one may require the non-negativity of the extracted features [2]. This paper deals with a constrained15

nonlinear pattern recognition problem. Here, pattern recognition includes applications such as feature16

extraction and data denoising, where the well-known (kernel) principal component analysis (kernel PCA)17

is considered [3]. One may also consider other applications, such as dimensionality reduction or manifold18

learning. Nevertheless, it turns out that these applications can be regarded as either feature extraction or19

data denoising. Therefore, for clarity of presentation, we will only distinguish the latter cases.20

It turns out that the non-negative constraint is very essential in many optimization problems [4]. This21

incorporates the mathematical equivalence between non-negative constrained optimization problems and22

non-positive ones. Only iterative methods can be used to solve general constrained optimization problems.23

Moreover, an iterative scheme for non-negativity can serve as the building block for more complex constrained24

optimization problems, such as the box-constrained optimization. Since the eighties, this was studied for25

signal deconvolution by Thomas in [5] and Prost et al. in [6]. In the beginning of the nineties, image26

deconvolution and deblurring were studied respectively by Thomas et al. in [7] and Snyder et al. in [8].27

In the last decade, a general method for iterative optimization under non-negativity constraints has been28

investigated, initiated by Lantéri et al. [9], and more recently for online learning [10], system identification29

[11] and distributed regression [12]. Recently, such non-negativity has been introduced by the authors in30

[13] for feature extraction of Event-Related Potential signals, and in [14, 15] to denoise images.31

Most investigations in constrained solutions for pattern recognition have been geared towards linear32

algorithms, such as the PCA in [16, 17, 18, 19]. In the last couple of decades or so, kernel machines have33

been increasingly used to solve nonlinear learning problems, popularized since Vapnik’s Support Vector34

Machines (SVM) [20]. While applied successfully to solve nonlinear classification, regression, and detection35

problems, it was not the case regarding pattern recognition. This is essentially due to the concept of the36

kernel trick, a ”double-edged sword”. In fact, the kernel trick provides a way to implicitly map data into some37

high-dimensional nonlinear feature space, which allows to construct nonlinear decision rules with essentially38

the same computational cost as linear ones. Nevertheless, one does not have access to most elements of the39

feature space, e.g., features or denoised elements computed using kernel PCA [21]. This is related to the40
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fact that the implicit map derived by the kernel is non-surjective, with most elements of the feature space41

that do not have exact pre-images, and thus cannot be exactly represented in the input space.42

The pre-image problem consists of mapping the pattern back from the feature space to the input space.43

Although the exact pre-image may seldom exists, an approximate solution is constructed. To this end, many44

methods have been presented in literature, starting with a fixed-point iterative algorithm proposed by Mika45

et al. in [22]. However, this technique was shown to be unstable, and suffers from local minima. In [23], the46

authors presented a pre-image technique based on a relationship between distances in both input and feature47

space, using Multi-Dimensional Scaling. More recently, a regularized pre-image estimation with kernel PCA48

is introduced in [24]. Honeine et al. in [25, 26] proposed a more direct method using relationship between49

inner products. See [27] for a recent review of the pre-image estimation problem. However, none of the50

aforementioned methods provides constrained solutions.51

This paper deals with two types of non-negativity constraints, by providing a unified framework. On the52

first hand, the non-negativity is applied to the pre-image, and on the other hand, it is considered regarding53

the weights in the model. In fact, the preimage can be written as a weighted combination of the training54

data and thus the weights can be estimated under some constraints. A first attempt to constrain the weights55

is given in [28] where a penalized problem is considered with a Laplacian penalty, yielding a computationally56

expensive problem. In a general setting, the linear combination includes both positive and negative weights.57

Therefore, such weights represent contributions, without any restrictions on the signs. However, many58

applications cannot be interpreted by including subtracted parts within the model. This is motivated by59

the rules of physics, with models involving purely additive components, as illustrated for instance in [16, 17]60

for the PCA.61

One of the useful properties of constraining the weights of the model is the sparsity property. In fact, the62

unconstrained solution can combine additive and subtractive contributions, a large part of them neutralizing63

others in the linear combination. By setting non-negativity constraints to these weights, it turns out that64

such a balance will lead to a large number of inactive components, i.e., weights close to zero. This is65

the property of sparsity, contributing to the widespread of Support Vector Machines algorithms [20] and66

compressed sensing literature [29]. We emphasize on the fact that this is a fortuitous side-effect of the67

non-negativity constraints, as opposed to a main sparsity objective function, where one controls the degree68

of sparsity of the solution. It is worth noting that including explicitly the sparsity constraint, such as69

minimizing an ℓ0 or an ℓ1 cost function, is computationally expensive (see for instance [18] and references70

therein).71

3



In this paper, we study a constrained solution to the pre-image problem, for nonlinear pattern recognition.72

To the best of our knowledge, pre-image techniques have only been applied for denoising purpose. We propose73

a unified framework to solve the pre-image problem for both feature extraction and denoising. We provide74

new theoretical results on the pre-image problem, including the weighted combination form, and provide75

sufficient conditions for the convexity of the problem. The constrained problem is considered with the non-76

negativity, either on the pre-image or on the weights. We propose a simple iterative scheme to address77

both constraints, with expressions for a wide range of kernel functions. Experiment results are conducted78

on artificial and real datasets, where many properties are investigated including the sparsity property, and79

compared to other methods from the literature.80

The rest of the paper is organized as follows. In the next section, we present the main idea behind81

kernel machines, and describe the kernel PCA technique where a unified framework for pattern recognition82

is proposed. Section III describes the pre-image problem and provides new theoretical results. In Section83

IV, we solve the pre-image problem under non-negativity constraints, either on the pre-image or on the84

weights. Finally, section V gives experimental results illustrating the efficiency of the proposed method on85

both artificial and real datasets.86

2. Kernel machines and kernel PCA for pattern recognition87

In recent years, kernel methods have been progressively more used due, on the one hand to the de-88

velopment of the statistical learning theory, and on the other hand to the computational efficiency of the89

corresponding algorithms. This is illustrated here with the kernel PCA, the nonlinear version of the principal90

component analysis.91

2.1. Kernel machines92

Let X ⊂ IRd be an input space with the canonical (Euclidean) dot product xi · xj for any xi,xj ∈ X .93

Let κ : X × X 7→ IR be a symmetric and continuous function, i.e., a kernel. A kernel is positive definite94

if and only if any matrix K with entries κ(xi,xj) for any finite subset of X is positive definite, that is95

∑

i,j αiαjκ(xi, xj) ≥ 0 for all αi, αj ∈ IR and all xi,xj ∈ X . Based on the Moore-Aronszajn theorem96

[30], any positive definite kernel guarantees the existence of a unique1 feature space (or reproducing kernel97

Hilbert space) H where κ defines an inner product. In other words, there exists a map Φ: X 7→ H, from the98

input space to the feature space, such that99

1Unique, up to an isometry.
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κ(xi, xj) = 〈Φ(xi), Φ(xj)〉H, (1)

for any xi,xj ∈ X , where 〈· , ·〉H denotes the corresponding inner product in H.100

Therefore, the positive definite kernel, henceforth called (reproducing) kernel, corresponds to a general-101

ization of the canonical dot product, and thus is a nonlinear measure of similarity between data. It turns102

out that most linear data processing algorithms can be easily recast in terms of dot product in input space.103

Substituting the dot product with a kernel offers nonlinear extensions of classical algorithms. This is re-104

ferred to as the kernel trick, and can be done without the need to explicitly compute the map Φ. Table 1105

summarizes the most commonly used kernel functions, grouped into two classes: projective kernels, of the106

form107

κ(xi,xj) = f(xi · xj), (2)

and radial kernels, of the form108

κ(xi,xj) = g(‖xi − xj‖
2). (3)

It is worth noting that some kernels induce infinite-dimensional feature spaces, such as the Gaussian kernel.109

The following two propositions will be considered in this paper to demonstrate new results, and are110

included here for completeness. Let f (k)(ζ) be the k-th derivative of the function f with respect to ζ. The111

following result is due to [31] (see also [32, Proposition 7.2]).112

Proposition 1 (Radial kernels). A sufficient condition for a function of the form κ(xi,xj) = g(‖xi−xj‖
2)113

to be a positive definite kernel is its complete monotonicity, i.e., its derivatives satisfies114

(−1)kg(k)(ζ) ≥ 0

for any ζ > 0 and k ≥ 0.115

This is the case of the Gaussian kernel κG(xi,xj) = g(‖xi − xj‖
2) with116

g(k)(ζ) =
(

− 1
2σ2

)k
g(ζ).

For the projective kernels, the following result is given in [32, Proposition 7.1].117

Proposition 2 (Projective kernels). Three necessary conditions for a function κ(xi,xj) = f(xi · xj) to be118

a positive definite kernel are, for any non-negative ζ:119
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Table 1: Commonly used reproducing kernels in machine learning, with parameters c, σ > 0, and p ∈ IN+

Type General form

P
ro
je
ct
iv
e

Monomial κm(xi,xj) = (xi · xj)
p

Polynomial κp(xi,xj) = (c+ xi · xj)
p

Exponential κE(xi,xj) = exp( 1
σ
(xi · xj))

Sigmoid κS(xi,xj) = tanh(c (xi · xj) + σ)

R
a
d
ia
l

Laplacian κL(xi,xj) = exp(−1
σ
‖xi − xj‖)

Gaussian κG(xi,xj) = exp( −1
2σ2 ‖xi − xj‖

2)

Multiquadratic κMQ(xi,xj) =
√

‖xi − xj‖2 + c

Rational κR(xi,xj) = 1−
‖xi−xj‖

2

‖xi−xj‖2+σ

f(ζ) ≥ 0

f (1)(ζ) ≥ 0
f (1)(ζ) + ζf (2)(ζ) ≥ 0

2.2. Kernel PCA120

The principal component analysis (PCA) is a powerful mathematical tool to reveal patterns within a121

set of data. It is a non-parametric approach, which does not incorporate any prior knowledge of the model,122

except its linearity. The PCA considers the most relevant eigenvectors of the data covariance matrix, i.e.,123

eigenvectors associated to the largest eigenvalues. These eigenvectors constitute a set of orthnormal axes124

capturing most of the variance within data. Let us consider a set of n (column-wise) data {x1,x2, . . . ,xn ∈125

X}. Then, consider the eigen-problem λkvk = C vk, where C = 1
n

∑n

j=1 xjx
T
j is the covariance matrix,126

data assumed to be centered around the origin. Then the m eigenvectors {v1,v2, . . . ,vm ∈ X} are chosen127

from the largest eigenvalues λ1, λ2, . . . , λm, where each λk gives the amount of captured variance in the128

direction of vk. Due to the linearity of the operations, each eigenvector lies in the span of the data.129

The conventional PCA identify only linear structures in a given dataset. A more generalized technique130

has been introduced to learn the nonlinearities using kernels, the so-called kernel PCA. The kernel PCA131

can reveal nonlinear kernel principal components that are more appropriate to complex and nonlinear data132

such as face images, handwritten digits and natural signals. For this purpose, data are (implicitly) mapped133

into a feature space, where PCA is applied. Although the resulting eigenvectors are linear in the feature134

space, they describe nonlinear relations in the input space. In order to solve this nonlinear problem, it is135
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more likely to apply the kernel trick, and not to explicitly compute the map from the input to the feature136

space. The concept of kernel trick is illustrated here for kernel PCA [33, 34].137

To this end, the PCA algorithm is recast in terms of inner product of data in feature space. Let138

Φ: X 7→ H be a nonlinear map, and {Φ(x1),Φ(x2), . . . ,Φ(xn) ∈ H} the set of mapped data. We wish to139

solve the (kernel) PCA, in terms of inner products in the feature space, 〈Φ(xi), Φ(xj)〉H, for i, j = 1, 2, . . . , n.140

The covariance matrix2 in H is CΦ = 1
n

∑n

j=1 Φ(xj)Φ(xj)
T . The principal axes, ϕk ∈ H for k = 1, 2, . . . ,m,141

correspond to the eigenvectors with the largest eigenvalues λk satisfying the expression142

λk ϕk = CΦ ϕk. (4)

By analogy with the classical PCA, any solution ϕk lies in the span of the Φ-images of the data. This implies143

that there exist some coefficients α1, α2, . . . , αn such that144

ϕk =

n
∑

i=1

αk,i Φ(xi). (5)

This is a more general result known as the representer theorem [35, 36] in kernel machines, where the solution145

of a (regularized) learning problem can be written in terms of a linear combination of the training data in146

the feature space.147

Replacing the expression of CΦ and the representer (5) into the eigen-problem (4), we get the new148

eigen-problem in terms of inner product with149

nλk αk = Kαk, (6)

where K is the n× n matrix of entries κ(xi,xj) with (1) applied, and αk = [αk,1 αk,2 · · · αk,n]
T . Further-150

more, two issues are considered in the final kernel PCA algorithm. First, as mentioned earlier, data should151

be centered in the feature space. This can be done by substituting the matrix K by (I − 1n)K(I − 1n),152

where I is the identity matrix and 1n is a n× n matrix of entries 1/n. Second, we normalize as in PCA by153

requiring that the corresponding vectors in H be unit-norm, i.e., 〈ϕk, ϕk〉H = 1. This is done by rescaling154

the weight vectors αk such that λk(αk · αk) = 1, for k = 1, 2, . . . ,m.155

2We assume that data are centered in H; otherwise we apply the algorithm by substituting each Φ(xj) with Φ(xj) −
1

n

∑n
i=1

Φ(xi).
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2.3. Kernel PCA for pattern recognition156

Roughly speaking, two main applications can be given with conventional PCA: Either consider relevant157

principal axes as extracted features, or project some noisy observation onto (the subspace spanned by) these158

axes as a denoising scheme. Both techniques are illustrated here in the feature space, using kernel PCA.159

2.3.1. Feature extraction160

Kernel-PCA defines the set of most relevant axes in the feature space. Let {ϕ1, ϕ2, . . . , ϕm ∈ H} be the161

set of these axes. Then each ϕk takes the form (5), namely162

ϕk =

n
∑

j=1

αk,j Φ(xj),

where αk,1, αk,2, . . . , αk,n are obtained from the eigenvector associated to the k-th eigenvalue in (6). We163

also define the relevant subspace of H as the one spanned by these axes. By analogy to the conventional164

PCA, these axes (as well as the associated subspace) capture most of the variance of the data. They can165

be regarded as features extracted from the data, capturing the largest variations and orthonormal to each166

others.167

2.3.2. Denoising168

Denoising is a technique applied in order to recognize patterns corrupted by noise. Let x0 ∈ X be a169

noisy sample. Then the associated image Φ(x0) is projected onto the relevant subspace (described above),170

resulting into the denoised pattern. The latter is expressed by the inner product of the mapped sample with171

the m principal axes, as172

ϕ =

m
∑

k=1

〈Φ(x0), ϕk〉H ϕk.

Expanding this expression by (5) and applying the equivalence between the inner product operator and the173

kernel function κ, we get174

ϕ =

m
∑

k=1

〈Φ(x0),

n
∑

i=1

αk,i Φ(xi)〉H

n
∑

j=1

αk,j Φ(xj)

=

m
∑

k=1

n
∑

i=1

αk,i κ(x0,xi)

n
∑

j=1

αk,j Φ(xj).
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Table 2: Unified view for the definition of γj in ϕ =
∑n

j=1 γj Φ(xj)

Application γj

Feature extraction of ϕk αk,j

Denoising of x0

m
∑

k=1

n
∑

i=1

αk,i αk,j κ(x0,xi)

2.3.3. A unifying view175

Now, we propose a unified view to tackle both above pattern recognition problems. To this end, we write176

the extracted feature and the denoised pattern as a linear combination of the mapped training data, with177

ϕk =
∑n

j=1 αk,j Φ(xj) and ϕ =
∑n

j=1

[
∑m

k=1

∑n

i=1 αk,i αk,j κ(x0,xi)
]

Φ(xj). Aggregating all these terms,178

we get a unifying view of both cases, with179

ϕ =
n
∑

j=1

γj Φ(xj). (7)

On the one hand, the feature extraction is given as ϕ = ϕk with180

γj = αk,j ,

and on the other hand, the denoising pattern with181

γj =

m
∑

k=1

n
∑

i=1

αk,i αk,j κ(x0,xi).

In the latter case, the coefficients γj depend on the noisy x0, which can be either a new observation or one182

of the training data. Summarized in Table 2, the unifying expression in (7) enables us to define a general183

form in the optimization problem for both feature extraction and denoising schemes.184

3. The pre-image problem185

Classically, the kernel PCA has shown its powerful ability in supervised learning, as a pre-processing186

stage followed by a discrimination rule. In these cases, for any given x0, the projection of Φ(x0) onto any187

ϕ ∈ H of the form (7), can be defined by 〈ϕ, Φ(x0)〉H =
∑n

j=1 γj κ(xj ,x0), and comparing it to a threshold188

gives the decision rule. The problem can be easily solved, with the coefficients computed using the kernel189

trick. However, in pattern recognition such as feature extraction and denoising, we are interested in the190
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Φ(·)

?

x∗

x1

x2

x3

Φ(x1)

Φ(x3)

Φ(x2)

xn

Φ(xn)

0

ϕm

ϕ2

ϕ1

Figure 1: Schematic illustration of the pre-image problem. Constructed in the feature space from some training data, principal
axes are mapped back to the input space by solving the pre-image problem, pre-imaging ϕ1 into x∗ here.

feature itself. More likely, we seek its counterpart in the input space, the observation space. It is natural to191

have extracted patterns of the same type as the data, i.e., identical input space, since one often seeks for a192

signal as a pattern in signal processing, or a denoised image in image processing. The pre-image problem is193

illustrated in Figure 1.194

With the exception of the Φ-images of the training data, only a very few elements in the feature space195

have pre-images, i.e., data which maps into (7) for some given coefficients. In fact, this is an ill-posed196

problem since the exact pre-image may not exist, and even if it exists, it might be not unique. To solve this197

problem, we seek an approximate solution, i.e., a x∗ ∈ X whose image Φ(x∗) is as close as possible to ϕ.198

The way back from the feature space to the input space is called the pre-image problem. Initially studied199

by Mika et al. in [22] for denoising purpose, it consists of solving the optimization problem200

x∗ = argmin
x∈X

1

2
‖ϕ− Φ(x)‖2H, (8)

where ‖·‖H denotes the norm in H, and thus provides a measure of distance between elements in the feature201

space, with the norm of their residue. Thanks to the unifying view given in (7) with ϕ =
∑n

i=1 γiΦ(xi), we202

consider the same optimization problem for either feature extraction or denoising, with203
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Table 3: Gradient of the cost function (9) for most commonly used kernels, with respect to either x (second column) or β from
x = βTX (third column).

Type ∇xJ(x) ∇βJ(β
TX)

Polynomial −

n∑

i=1

γi p κp−1(xi,x)xi + p κp−1(x,x)x −

n∑

i=1

γi p κp−1(xi,β
TX)xiX

T + p κp−1(β
TX,βTX)βTXXT

Sigmoid −

n∑

i=1

γi (1 − κ2
S(xi,x)) cxi + c (1− κ2

S(x,x))x −

n∑

i=1

γi c (1 − κ2
S(xi,β

TX))xiX
T + c (1 − κ2

S(β
TX,βTX))βTXXT

Exponential −
1

σ

n∑

i=1

γi κE(xi,x)xi +
1

σ
κE(x,x)x −

1

σ

n∑

i=1

γi κE(xi,β
TX)xiX

T + 1

σ
κE(βTX,βTX)βTX XT

Gaussian −
1

σ2

n∑

i=1

γi κG(xi,x) (xi − x) −
1

σ2

n∑

i=1

γi κG(xi,β
TX) (xi − βTX)XT

x∗ = argmin
x∈X

1

2
‖

n
∑

i=1

γi Φ(xi)− Φ(x)‖2H

The general form used for the calculation is described by204

x∗ = argmin
x

J(x)

where J(x) represents the resulting cost function, defined by205

J(x) = −

n
∑

i=1

γi κ(xi,x) +
1

2
κ(x,x) (9)

with γj given in Table 2. In this expression, the term 1
2

∑n

i=1

∑n

j=1 γi γj κ(xi,xj) has been removed since206

it is independent of x.207

This is a highly nonlinear optimization problem. To solve this problem, one may study the gradient of208

the cost function J(x) with respect to x. At an optimum, the gradient with respect to x disappears, namely209

∇xJ(x) = 0. The resulting gradient is given as210

∇xJ(x) = −

n
∑

i=1

γi
∂κ(xi,x)

∂x
+

1

2

∂κ(x,x)

∂x
. (10)

This is the general form for all kernels, including for instance the projective kernels of the form (2) such as211

the polynomial kernel. Expressions (9)-(10) can be further simplified for the wide class of radial kernels, of212

the form (3) such as the Gaussian kernel. In such cases, κ(x,x) is independent of x, for all x ∈ X , thus213

∂κ(x,x)/∂x equals to zero, and only the first term of (10) remains. See Table 1 for expressions of commonly214

used kernels.215
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Let us now write the pre-image using a linear combination of the available data, that is x∗ =
∑n

i=1 β
∗
i xi.216

To the best of our knowledge, this is the first time that a proof of this statement is derived, while it has217

been exploited and validated by many pre-image techniques from the literature [23, 25, 28].218

Theorem 1. Any pre-image x∗ can be written as a linear combination of the available data, namely219

x∗ =

n
∑

i=1

β∗
i xi (11)

where β∗
i are weights to be determined.220

Proof. To prove this, we consider separately the two classes of kernels: projective and radial kernels (see221

Table 1). Using the expression of the gradient (10), we have at the optimum ∇xJ(x
∗) = 0, namely222

n
∑

i=1

γi
∂κ(xi,x

∗)

∂x∗
=

1

2

∂κ(x∗,x∗)

∂x∗
. (12)

Let us begin with the projective kernels, of the form (2). Thus, the left-hand-side of this equation can223

be written as224

n
∑

i=1

γi
∂κ(xi,x

∗)

∂x∗
=

n
∑

i=1

γi
∂f(xi · x

∗)

∂(xi · x∗)
xi,

and its right-hand-side can be expressed as225

1

2

∂κ(x∗,x∗)

∂x∗
=

1

2

∂f(x∗ · x∗)

∂(x∗ · x∗)
2x∗.

Combining both expressions, the equation (12) becomes226

x∗ =
n
∑

i=1

γi
f (1)(xi · x

∗)

f (1)(x∗ · x∗)
xi, (13)

of the form x∗ =
∑n

i=1 β
∗
i xi.227

We now study the class of radial kernels, defined by expression (3). In such case, the term ∂κ(x,x)/∂x228

vanishes. The gradient at the optimum, (12), can be written as229

n
∑

i=1

γi
∂κ(xi,x

∗)

∂x∗
= 0,

with the left-hand-side given as230

n
∑

i=1

γi
∂κ(xi,x

∗)

∂x∗
=

n
∑

i=1

γi
∂g(‖xi − x∗‖2)

∂(‖xi − x∗‖2)
2(x∗ − xi).

The final result of (12) can thus be expressed as231

x∗ =

n
∑

i=1

γi
g(1)(‖xi − x∗‖2)

∑n

j=1 γj g
(1)(‖xj − x∗‖2)

xi, (14)

again of the form x∗ =
∑n

i=1 β
∗
i xi.232
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The following result provides new insight into the connection between the weights in both feature and233

input spaces.234

Corollary 1. When input data are non-negative, if the weights in the feature space are non-negative,235

i.e., γ1, γ2, . . . , γn ≥ 0, then the weights of the corresponding pre-image are also non-negative, i.e.,236

β∗
1 , β

∗
2 , . . . , β

∗
n ≥ 0. Moreover, the non-negativity of the data is not required for radial kernels.237

Proof. For the projective kernels, we have from (13):238

β∗
i = γi

f (1)(xi · x
∗)

f (1)(x∗ · x∗)
.

When all input data are non-negative, the above derivatives are non-negative due to Proposition 2. The239

same proof can be applied for the radial kernels by applying Proposition 1 to (14) with240

β∗
i = γi

g(1)(‖xi − x∗‖2)
∑n

j=1 γj g
(1)(‖xj − x∗‖2)

.

241

The above results are based on the first derivative of the cost function (9). Its second derivative provides242

a deeper insight on its convexity, as derived in the following theorem.243

Theorem 2. For the class of radial kernels, a sufficient condition for the convexity of the cost function is244

given by the non-negativity of the coefficients γ1, γ2, . . . , γn.245

Proof. Taking the second derivative of the cost function (9) with respect to x, we get246

∇2
xJ(x) = ∇x

[

2

n
∑

i=1

γi (xi − x) g(1)(‖xi − x‖2)
]

= 2

n
∑

i=1

γi

(

− g(1)(‖xi − x‖2) + 2(xi − x)2 g(2)(‖xi − x‖2)
)

.

The term between parentheses is positive, due to Proposition 1. Therefore, a sufficient condition for the247

second derivative to be non-negative, and thus for the convexity of (9), is that all the coefficients γi are248

non-negative.249

The non-negativity of the coefficients γi’s is a condition imposed by the SVM for classification and250

regression, as well as some other machine learning methods. However, this is not the case in general, with251

the kernel PCA for instance. In this paper, we will not limit ourselves to the convex problem, but consider252

the more general non-convex problem.253

From Theorem 1, the form x∗ =
∑n

i=1 β
∗
i xi provides a fixed-point iterative method to solve the pre-image254

problem, where the βi’s depend on x∗. For the Gaussian kernel, we have255

κG(xi,xj) = g(‖xi − xj‖
2) = exp( −1

2σ2 ‖xi − xj‖
2)
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thus256

g(1)(‖xi − xj‖) = − 1
2σ2 κG(xi,xj)

From expression (14), we get the fixed-point iterative method for the Gaussian kernel257

x∗ =

∑n

i=1 γi κG(xi,x
∗)xi

∑n

i=1 γi κG(xi,x∗)
. (15)

When the polynomial kernel is applied, with258

κp(xi,xj) = f(xi · xj) = (c+ xi · xj)
p,

then259

f (1)(xi · xj) = p κp−1(xi,xj),

where κp−1(xi,xj) = f(xi · xj) = (c + xi · xj)
p−1. From expression (13), we get the fixed-point iterative260

method for the polynomial kernel261

x∗ =

∑n

i=1 γi κp−1(xi,x
∗)xi

κp−1(x∗,x∗)
.

Table 3 (second column) illustrates the diversity of the gradient expressions for different kernels. Such262

fixed-point iterative algorithm suffers from instabilities and even may not converge at all, as illustrated in263

[22] where only the Gaussian kernel was used. Moreover, results widely vary for different starting points in264

practice. These issues are likely due to two factor: First, the absence of a stepsize parameter, which allows265

to control the convergence of the algorithm. Second, the unconstrained solution, as the hypothesis space266

corresponds to the whole input space. Both issues will be addressed in next section.267

4. The pre-image under non-negativity constraints268

In many applications in pattern recognition, one seeks non-negativity in the solution. In image processing269

for instance, training data are images or patches within an image, i.e., data which are non-negative for gray-270

level images. To get a feature extracted or a denoised version of the same type (same input space with271

non-negativity of each pixel), one should impose non-negativity constraints on the pre-image. However, the272

constraints are applied either on the data itself, or on the weights model using the linear combination of273

(11).274
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Φ(x1)
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Figure 2: Schematic illustration of the pre-image problem under the non-negativity constraints. A given noisy data x0 is mapped
into Φ(x0), then projected into the subspace spanned by the most relevant principal axes ϕ1, ϕ2, . . . , ϕm. The denoised pattern
ϕ is mapped back to the input space, into x∗.

4.1. Non-negativity constraint on the data itself275

In this section, we consider the general problem of solving the pre-image problem under non-negativity276

constraint. With the cost function J(·) defined in (9), we study the constrained optimization problem277

x∗ = argmin
x

J(x) subject to x ≥ 0, (16)

where expression x ≥ 0 refers to the non-negativity of all entries of the vector x. The gradient of J(·)278

is given in Table 3 for several kernel types. Next, we derive an iterative updating rule that leads to the279

non-negativity of pre-image. Figure 2 illustrate the concept of this constrained pre-image.280

A general form of the pre-image problem under non-negativity constraints is defined in (16). Consider281

the Lagrangian function associated to this constrained optimization problem, with3282

J(x)− µTx,

where µ represents the vector of non-negative Lagrange multipliers. At the optimum solution x∗, corre-283

sponding to the optimal multiplier vector µ∗, the first-order (Karush-)Kuhn-Tucker optimality conditions284

3A more general form can be given using a function expressing the constraints, g(x), with the Lagrangian expression
J(x)− µT g(x) [9]. For clarity of this paper, this function is substituted with its simplest form, x.
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are satisfied, with285

∇x

[

J(x∗)− µ∗T x∗
]

= 0

µ∗
i x

∗
i = 0 for all i = 1, 2, . . .

where x∗
i (resp. µ∗

i ) is the i-th component of x∗ (resp. µ∗), and ∇x is the gradient with respect to x. We286

can easily see that the first condition can be written as ∇x

[

J(x∗)]i − [µ∗]i = 0 for all i, where [ · ]i denotes287

the i-th component. Combining all these equality conditions by removing the Lagrangian multipliers, we get288

for each i = 1, 2, . . ., either x∗
i = 0 (active constraint) or [∇xJ(x

∗)]i = 0 (inactive constraint with x∗
i > 0).289

In order to solve this equation, we consider an iterative scheme. The updating expression at iteration290

t+ 1 of all xi(t+ 1) from previous xi(t) is given by291

xi(t+ 1) = xi(t) + ηi(t)xi(t) [−∇xJ(x(t))]i,

where ηi(t) is a stepsize factor to control convergence and impose the non-negativity, and the minus sign292

illustrates a gradient descent scheme. A condition on ηi(t) should be satisfied to insure the non-negativity293

of all components xi(t+ 1) of x(t+ 1). To this end, we write the above expression as294

xi(t+ 1) = xi(t)
(

1 + ηi(t) [−∇xJ(x(t))]i
)

,

and thus this translates into a condition on the non-negativity of 1+ ηi(t) [−∇xJ(x(t))]i. Two cases can be295

distinguished: If [∇xJ(x(t))]i ≤ 0, no restriction is applied on the value of the stepsize; Otherwise, when296

[∇xJ(x(t))]i > 0, then we have to crop the value of the stepsize such that297

ηi(t) ≤
1

[∇xJ(x(t))]i
.

In practice, one may use a stepsize independent of i, which satisfies the following inequality298

η(t) ≤ min
i

1

[∇xJ(x(t))]i
.

Written in matrix form, the final updating rule is defined by299

x(t+ 1) = x(t)− η(t) diag
[

x(t)
]

∇xJ(x(t)), (17)
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Table 4: Values of the parameters for the three datasets.

datasets
banana donut frame

Noise parameter ν 0.2 0.4 0.2
Number of training data n 800 500 550
Number of eigenvectors m 2 4 4
Bandwidth of the Gaussian kernel σ 0.7 0.8 0.5
Number of denoised data N 200 100 510
Value of the stepsize parameter η 0.3 0.3 0.3
Number of iterations tmax 20 20 20

where diag[·] is the diagonal operator, namely diag[x(t)] is the diagonal matrix whose entries are xi(t). In300

this expression, −diag[x(t)]∇xJ(x(t)) corresponds to the direction of descent.301

4.2. Non-negativity constraint on the model weights302

By virtue of the Theorem 1, the pre-image can be expressed in terms of a linear combination of the303

available data, namely x∗ =
∑n

i=1 β
∗
i xi, for some weights β∗

i to be determined. Therefore, we seek the304

optimal pre-image of the matrix form305

x∗ = β
∗T
X,

where X = [x1 x2 · · · xn]
T and β∗ = [β∗

1 β∗
2 · · · β∗

n]
T is the vector of unknown coefficients. This allows us306

to present another strategy to tackle the pre-image problem, by imposing a constraint on the coefficients in307

the above expression. We define the constrained pre-image problem as308

x∗ = argmin
x

J(x) subject to β ≥ 0,

with x = βTX.309

The corresponding cost function (9) can be written as310

J(βTX) = −
n
∑

i=1

γi κ(xi,β
TX) +

1

2
κ(βTX,βTX). (18)

Taking the gradient of the above expression with respect to β, we get311

∇βJ(β
TX) = ∇xJ(x)X

T , (19)
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where x = βTX. Table 3 (third column) gives the gradient with respect to β of the most commonly used312

kernels. The relationship between these expressions and the gradient with respect to x (second column in313

Table 3) is given in expression (19).314

By deriving this analogy with the constrained optimization problem (16) (non-negativity on the pre-315

image), we revisit the latter in order to impose the non-negativity on the weights β∗ in the expansion316

x∗ = β∗TX. This yields the following optimization problem317

β∗ = argmin
β

J(βTX) subject to β ≥ 0.

In this expression J(·) is defined as in (18), with its gradient with respect to β given in (19). From (17),318

the updating rule of these weights is given as319

β(t+ 1) = β(t)− η(t) diag[β(t)]∇xJ(x)X
T ,

where x = βTX. The final weights β∗
1 , β

∗
2 , . . . , β

∗
n determine the pre-image with x∗ =

∑n

i=1 β
∗
i xi. From320

this expression, we can see that in the case of non-negative training data, x1,x2, . . . ,xn ≥ 0, the resulting321

pre-image x∗ will be also non-negative.322

By imposing non-negativity of the weights, we get a beneficial side-effect with the sparseness of the323

solution. This means that a large number of the weights is close to zero, or in other words, only a small324

number of training data contributes to the final solution. This property is probably due to the non uniqueness325

of the unconstrained solution, where redundancy in data may result into additive and subtract components326

that neutralize their contributions. Sparseness is a very desirable property in pattern recognition and327

machine learning, contributing to a better understanding of the results, in bioinformatics for instance. It is328

illustrated in the next section on artificial and real datasets.329

5. Experiments330

Three applications of the proposed method are investigated in this section: two applications for data331

denoising and one on feature extraction. In the first application, two-dimensional artificial data are studied,332

providing an illustration of the behavior of the algorithm, for two cases: restricting the solution to be333

non-negative, or forcing the weights to be non-negative, and therefore studying the sparsity of the solution.334

In the second application, real images from the MNIST database are used to illustrate the efficiency of335

the proposed method with kernel PCA for denoising. In the third application, we study nonlinear feature336
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extraction from real signals. Signals are based on the event-related potentials of the brain activity from the337

electroencephalograph.338

5.1. Artificial datasets: Denoising scheme339

Let us start with the artificial datasets. For illustration purpose, we consider a two-dimensional space,340

and apply the denoising scheme separately on three different shapes4: a banana, a donut and a frame. For341

each example, a set of n samples, given in Figure 3 (upper row), was generated to learn the m eigenvectors.342

With its quadratic form, we set m = 2 for the banana dataset, while m = 4 for the more complicated343

shape of the frame. Another set of N samples was generated from the same distributions, as given by the344

(very small) blue dots in Figure 3. Values of the parameters used for each dataset are given in Table 4.345

It is obvious that these nonlinear shapes cannot be denoised properly using a linear approach, such as the346

conventional PCA.347

First, we compared the non-negative pre-image approach with other unconstrained techniques, including348

the fixed-point technique defined by (15) and the regularized pre-image estimation [24]. To this end, we349

considered a setting where all algorithms should give comparable results: all the samples are non-negative.350

This was done by translating the samples into the positive quadrant, as illustrated in Figure 3 (upper row).351

For all these algorithms, the noisy version of the data was used at initialization, i.e., x(t) for t = 0, given by352

(very small) blue dots in Figure 3. With the number of iterations fixed to tmax = 20 for iterative algorithms,353

the denoised samples obtained by these pre-image techniques are represented by red dots. The trajectories354

obtained at each iteration are represented by green lines (except for the regularized pre-image estimation355

which is not an iterative technique). As we can see with the length of these lines, the fixed-point algorithm356

(second row) has slower convergence as opposed to the proposed approach (last row). This is mainly due357

to the use of the stepsize η, set here to a fixed value of η = 0.3 for the three datasets. One may take into358

consideration optimized stepsize values, either with an optimal value for each dataset using a line search359

technique, or with a stepsize value decreasing at each iteration, i.e., η(t + 1) < η(t). These optimization360

schema are beyond the scope of this paper. It is worth noting that the results obtained from the regularized361

pre-image estimation show that one may get into local minima.362

We turn now to the approach where the weights are constrained to be non-negative. No restrictions363

on the data were required in this case, and thus no translation was operated as given above, with samples364

4The banana dataset is defined by a parabola having (x, x2+ξ) as coordinates, where x on the x-axis is uniformly distributed
within the interval [0.5, 2.5], and ξ is normally distributed with a standard deviation of ν = 0.2. The donut dataset is given
by data from a circle of radius 0.9, corrupted by a uniformly distributed noise on [−ν, ν], with ν = 0.4. The frame dataset is
defined by a square of four lines, each of length 2. The data were uniformly randomly drawn within these lines and corrupted
by a uniformly distributed noise on [−ν, ν], with ν = 0.2.
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having positive as well as negative values. We compared three types of kernels: the Gaussian kernel with365

bandwidth σ = 0.7 as above, the polynomial quadratic kernel with p = 2 and c = 1, and the exponential366

kernel with σ = 1 (see Table 1). For all these kernels, the initial value for β given a noisy data x0 was set367

to the solution of x0 = βTX by retaining only non-negative weights, namely using a pseudo-inverse with368

β(0) = (XXT )−1X xT
0 ,

for non-negative values; otherwise it was set to zero. Even with only one iteration (t = 1) and a small stepsize369

value of η = 0.1, the proposed algorithm yielded a good denoised pre-image result, as shown in Figure 4370

(upper row). Setting the maximum number of iterations to t = 100, the three kernels gave comparable371

results reflecting the shape of the banana manifold, as shown in Figure 4 (lower row). This result is in372

opposition with previous results observed in [23], where Kwok et al. claim that only the Gaussian kernel373

can be pre-imaged with their work. By constraining the solution to only non-negative weights, as studied374

in this paper, we see that other kernels provide relevant results.375

Now, we turn to the analysis of the model weights, and the sparsity of the solution. To this end, we376

consider the distribution of the weights β1, β2, . . . , βn for each of the N = 200 noisy samples. Figure 5377

shows the histogram of such distribution, where each color in the colorbar corresponds to a denoised sample.378

While we represent here the results of a single iteration, similar results are obtained for larger number of379

iterations. These results illustrate the fact that the weights are non-negative as expected, lying between 0380

and 0.018. Moreover, most of them are close to zero, namely below 0.002. This is the property of sparsity,381

well established and often required by a large class of algorithms in machine learning community.382

5.2. Denoising images383

We applied the denoising scheme on real handwritten digits, taken from the MNIST database5. From384

the dataset, we have chosen images of the digit “0”. Each image is defined by 28 × 28 gray-level pixels,385

i.e., pixels have values between 0 and 255. Thus, each image can be written as a 784-dimensional vector.386

The images were corrupted by adding a Salt-and-Pepper noise, with 0.1 density. The images were denoised387

under the non-negativity of the data, as defined by (16) (see also [14]).388

The relevance of the proposed method is now demonstrated for image denoising, and compared to different389

techniques: the fixed-point iterative method [22], the multi-dimensional scaling method [23], the regularized390

pre-image estimation [24], and the penalized pre-image [28]. For this purpose, we used the Gaussian kernel391

5This MNIST database is available at http://yann.lecun.com/exdb/mnist/.
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with a bandwidth set to σ = 500, fixed for all pre-image techniques. A set of 500 images was used to train392

the kernel PCA with 50 eigenvectors. Another set of ten images, shown in Figure 6 (first row), corrupted393

by the same noise settings, was used for denoising (second row). Different techniques are applied in order394

to denoise the digits. As we can see in Figure 6, the proposed method presents the best denoising results395

among all the others.396

5.3. Feature extraction397

We considered feature extraction with an application to real signals, and more specifically recordings398

measuring brain activity. The feature extraction under non-negativity is the constraint applied on the399

weights of the model [13]. Event-related potentials (ERP) refer to the electrical activity in the brain due to400

a response to a specific stimulus, measured with electroencephalograph (EEG). There is a strong consensus401

on the components of an ERP recoding, independent of either the participants or the stimulus type. Such402

signal includes a negative wave deflection (called N200 or N2) followed by a positive one (called P300 or403

P3), occurring respectively around 200 ms and 300 ms after stimulus onset. Within the brain activity,404

such a single response is not usually visible in these recordings. To circumvent this, many trials are often405

performed using the same stimulus. In practice, one takes the average of these responses, which gives a406

first-order moment statistic of the ERP recordings. In this paper, we give another statistic taking into407

account the variance of these signals, by combining kernel PCA with the Gaussian kernel on the one hand,408

and the proposed pre-image technique on the other.409

For experimentations, we used the ERP signals available here6; for more information, see also [37, 38].410

The auditory stimulus is composed of a series of two alternating tone signals, randomly played with a time411

between stimuli (also called Inter-Stimulus Interval or ISI) of one second. These stimuli correspond to either412

a tone at the frequency 800 Hz or another tone at 560 Hz, played within the ratio 85% of the first signal413

and 15% of the second one. The ERP signals are recordings from a 64-channel EEG, where only the midline414

central channel Cz is used for its high reliability in potential detection. The recording captured within the415

Cz channel are segmented into signals in order to view the reaction of the subject to the stimulus by using416

a window [0, 600] ms, where 0 corresponds to the instance of onset stimulus. Such window is appropriate to417

extract both N200 and P300 components of the ERP. A set of 87 signals of length 600 ms is collected, with418

151 samples each, as illustrated in Figure 7 where only ten randomly selected signals are shown to display419

the variety of these signals.420

6The dataset of ERP recordings are available from the University of Kuopio, Finland and Mika Tarvainen’s page
http://venda.uku.fi/opiskelu/kurssit/LSA/.
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We applied the kernel PCA to extract the first principal axe of these data, in the feature space associated421

with the Gaussian kernel. The pre-image approach allowed us to go back to the initial space, that is, the422

signal space. Because signals have negative components7, we applied the pre-image technique with the423

non-negative constraints on the weights. Following some preliminary experimentations, the Gaussian kernel424

was used, with the bandwidth set to σ = 500, and the stepsize value to the value η = 0.1. Next, we study425

the influence of the initialization on the algorithm, based on two different initializations.426

First, the algorithm was initialized using a random input data, namely x1 without loss of generality and427

shown in Figure 8 (upper figure). Then β(0) = (XXT )−1X xT
0 for non-negative values, and zero otherwise.428

Applying the algorithm for t = 100 iterations gave the feature illustrated in Figure 8 (lower figure). We429

can easily see both important components of the ERP, the N200 and P300 waves. Moreover, variations of430

features of interest are opposed to the highly fluctuating initial signal.431

In order to study the evolution of the weights at each iteration, we considered the initialization case432

where all the weights are equal, i.e., βk = 1/n for all k = 1, 2, . . . , n. This corresponds to the average of433

the data, where the solution results from a uniform contribution of all available data. The evolution of the434

distribution of these weights over the first five iterations is given in the histograms of Figure 9. This shows435

that the proposed algorithm resulted into sparse representations, with sparsity increasing at each iteration.436

The resulting feature is given in Figure 10, which shows both N200 and P300 components, even within the437

first few iterations. By comparing this technique to the average of some signals in Figure 11 (upper figure)438

and to all signals in Figure 11 (lower figure), we see that we need all the signals to find the N200 and P300,439

however, using our method, we only have to use a few signals.440

6. Conclusion and future work441

In this paper, we derived several new theoretical results, and proposed an iterative method to solve the442

pre-image problem with non-negativity constraints. These constraints were either on the pre-image itself, or443

on the weights of the model. In this case, we investigated experimentally the sparsity of the representation.444

Compared to other techniques, simulations showed the effectiveness of the proposed method.445

As for future work, we would like to incorporate box constraints, where upper and lower bounds must446

be satisfied, such as processing gray-level images. We suggest further investigations on other methods that447

involve pre-image techniques, such as an autoregressive model.448

7To be more precise, measurements of brain activity are always positive. However, practitioners calibrate these measure-
ments, resulting into zero-mean signals.
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Figure 3: Denoising artificial datasets, for the three shapes: banana (left column), donut (middle column) and frame (right
column). A set of training data (▽ in upper row) is used for constructing the relevant subspace using the kernel PCA with
the Gaussian kernel. Another set of data (designated by ·) is denoised (into •) using either the fixed-point (second row), the
regularized pre-image estimation method (third row) and the proposed (lower row) algorithms. The evolution of the solution
for the iterative methods for the 20 iterations is given with the paths (shown with —).
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Gaussian kernel Polynomial kernel Exponential kernel
κG(xi,xj) = exp

(

−1
2σ2 ‖xi − xj‖

2
)

κ2(xi,xj) = (1 + xi · xj)
2 κE(xi,xj) = exp(xi · xj)
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Figure 4: Denoising with constraints on the model weights, of the banana dataset for a single iteration (upper row), and after
t = 100 iterations (lower row). Three different kernels are compared: Gaussian (left column), polynomial (middle column),
and exponential (right column) kernels.
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Figure 5: Distribution of the model weights for each of the 200 noisy data from the banana dataset, after only one iteration of
our algorithm, corresponding to results given in Figure 4 (upper row). All denoised data (each represented by a color within
the colorbar) enjoy the sparsity property, with a large number of weights close to zero.
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Initial images

Noisy images

Fixed-point [22]

(100 iterations)

MDS technique [23]

Penalized preimage [28]

Regularized preimage [24]

Our method [this paper]

Figure 6: A set of ten “0”-digit images (first row) corrupted by a salt-and-pepper noise of density 0.1 (second row), on which we
applied the kernel PCA for data denoising. The pre-image results using the fixed-point iterative algorithm [22] are illustrated
(third row), the MDS technique [23] (fourth row), the penalized preimage learning method [28] (fifth row), the regularized
preimage estimation technique [24] (sixth row), and the non-negative pre-image with the iterative schema (17) (last row).
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Figure 7: Some ERP signals recorded from the Cz channel. The diversity of these signals is shown, with some signals not
having a positive component around 300 ms (see for instance —).
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Initialization signal
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Figure 8: Feature extraction of the ERP data, with the algorithm initialized to the initial signal (upper figure). By pre-imaging
the first principal axe of kernel PCA, we get the feature (lower figure).
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Figure 9: Distribution of the model weights from the first iteration (upper figure) to the fifth iteration (lower figure). This
illustrates the evolution of the weights towards a sparse distribution.
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Figure 10: Feature extraction of the ERP data, with the algorithm initialized to the uniform contribution of all available
signals, corresponding to t = 5 in Figure 9 (lower figure).
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Figure 11: The average of 10 signals (upper figure) and the average of all signals (lower figure) of the ERP data.
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