
Online Kernel Principal Component Analysis:
A Reduced-Order Model

Paul Honeine, Member, IEEE

Abstract—Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis

and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-

PCA. To this end, we examine a kernel-based version of Oja’s rule, initially put forward to extract a linear principal axe. As with most

kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to

control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions

with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes.

Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of

handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA.

Index Terms—Principal component analysis, online algorithm, machine learning, reproducing kernel, Oja’s rule, recursive algorithm.

Ç

1 INTRODUCTION

PRINCIPAL component analysis (PCA) is a powerful tool
for data analysis and dimensionality reduction [1]. It

consists principally in determining a subspace that explains
most of the variance of the data. By projecting data into this
subspace, one can operate a dimensionality reduction
procedure and extract the structure of the data. This is
classically achieved by diagonalizing the covariance matrix
of the data, as its eigenvectors associated with the largest
eigenvalues correspond to the principal axes defining this
subspace. With a computational complexity of order three
with the size of the data set, this may become cumbersome
for the large-scale data sets often required in order to
retrieve principal axes of complex data distributions in
high-dimensional spaces. To address this drawback, differ-
ent incremental techniques have been proposed, such as [2],
[3], or more recently [4] (and references therein), however
still with high computational cost. Adapted for online
learning, artificial neural network methods gained popu-
larity for addressing this problem, propelled by the work of
Oja for the first principal axis determination [5], [6] and its
extension by Sanger for multiple axes [7], [8]; the latter is
often known as the generalized Hebbian learning.

Initiated by the pioneering work of Aronszajn [9], the
theory behind reproducing kernel Hilbert space (RKHS)
provided new advances in machine learning in the last
decade. Moreover, it offers an elegant framework to derive
nonlinear techniques based on conventional linear ones, as
long as all operations can be expressed only in terms of

inner products of the data. This is initially motivated by the
fundamental work of Vapnik on support vector machines
(SVM) for regression and classification [10], even though
the concept of kernel trick was first published by Aizerman
et al. in [11]. Developed in the last decade, an armada of
techniques take advantage of this concept, such as kernel
Fisher discriminant analysis [12], kernel partial least
squares regression [13], kernel basis pursuit [14], to name
just a few (see, for instance, [15] for a survey of kernel
methods for pattern recognition). Based on this concept,
Schölkopf et al. [16] propose a nonlinear counterpart of
PCA, the kernel-PCA. More recently, an iterative technique
for kernel-PCA is elaborated by Kim et al. in [17], [18] by
kernelizing Oja’s and Sanger’s rules. This is known as the
kernel Hebbian algorithm for iterative kernel-PCA. Still, the
number of available observations should be fixed in
advance, and they are assumed to be known in advance.

Traditional kernel methods are essentially batch optimi-
zation problems, with all training data available in advance.
Such techniques are unsuitable for large-scale data sets, and
thus unadapted for real-time applications. To address these
drawbacks, online learning in kernel machines attracted a
lot of interest in the last couple of years. Online learning
refers to a paradigm where, at each time instant, a new
observation is available, and the model needs to be updated
according to it without having to reexplore all previously
available data. Most of the work in that direction has been
focused on classification and regression problems [19], [20],
[21], [22], [23]; only a few attempts have been made for
unsupervised learning. While Oja’s classical rule is initially
proposed for online PCA, its kernelized counterpart is not
adapted for such a task since it operates iteratively on batch
data sets, while their number should be finite and fixed in
advance [17]. Unfortunately, this drawback is expected in
most kernel machines since the order of the model for the
optimal solution corresponds to the number of training
data. This is a consequence of the well-known Representer
Theorem [24], [25]. Its application to the kernel-PCA results
in the fact that each principal axis can be expressed as a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012 1

. The author is with the Laboratoire de Modélisation et Sûreté des Systèmes,
Institut Charles Delaunay (UMR CNRS 6279), Université de Technologie
de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex, France.
E-mail: paul.honeine@utt.fr.

Manuscript received 12 July 2010; revised 1 Dec. 2011; accepted 4 Dec. 2011;
published online 22 Dec. 2011.
Recommended for acceptance by F. Bach.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-07-0527.
Digital Object Identifier no. 10.1109/TPAMI.2011.270.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

linear combination of the kernel functions associated with
the available training data. Therefore, the number of
available observations determines the model order, i.e.,
number of elements in the linear combination.

In order to overcome this problem and derive an online
kernel-PCA algorithm, we propose in this paper to control
online the order of the model. Since the principal axes lie
within the span by the kernel functions of the training data
in the RKHS, we suggest restraining this span to some
selected kernel functions. Upon arrival of a newly available
observation, a selection criterion determines if the corre-
sponding kernel function either can be discarded from the
model or should be added to it. In the latter case, this
operation will increase the model order, thus augmenting
the spread in the RKHS. We shall henceforth refer to the
selection criterion as the order control criterion. We
examine a distance-based selection criterion often consid-
ered for sparse regression [26], [27]. Underlying this
strategy, it turns out that the reduced-order model can
efficiently approximate the optimal principal axes with
optimality in the sense of solving kernel-PCA over the
whole data set. To this end, we study the approximation
error and derive an upper bound which is inversely
proportional to the corresponding eigenvalue, which means
that one can approximate with small errors principal axes
associated with high eigenvalues, i.e., most relevant
principal axes. Experimental results demonstrate the
relevance of the theoretical study.

The remainder of this paper is organized as follows: We
begin in Section 2 by reviewing briefly Oja’s rule for PCA
analysis, and show its unadaptability for online kernel-PCA
learning. Section 3 is devoted to studying the order control
criterion, as we study some properties of the resulting
model, including approximation errors. In Section 4, we
derive the online kernel-PCA algorithm, and study in
Section 5 some well-known issues such as the rate of
convergence, centering/noncentering the data, and the
denoising scheme with reduced-order models. We illustrate
the relevance of the proposed method with experimenta-
tions on both synthetic and real data sets in Section 6. But
before, we prepare the ground by giving some connections
relating PCA literature with our work.

1.1 Related (and Unrelated) Work

The proposed method is an online algorithm for kernel-
PCA. In its traditional linear version, PCA can be solved
with offline batch algorithms [1], as well as online learning
algorithms with Oja’s [5] and Sanger’s [7] rules (also known
as generalized Hebbian algorithms or GHA). Kernel-PCA
[16] and the kernel Hebbian algorithms [18] are the
nonlinear extensions of these algorithms, by embedding
data into a high-dimensional feature space. As with kernel
machines, they are built on models, linear in the feature
space, with an order equal to the number of available data.
Therefore, these kernel machines are in essence offline
algorithms, in batch setting for kernel-PCA and iterative
mode for kernel Hebbian algorithm for iterative kernel-PCA.
The number of available data should be fixed in advance,
and they are assumed to be known in advance. Moreover, to
converge to the PCA solution, the iterative kernel-PCA
requires many passes through the entire data set.

In this paper, we focus on the online learning scenario,
which consists of a potentially infinite stream of observations,
presented one at a time (a single pass is available). Such an
online learning algorithm has space requirements that are
independent of the number of data, and we do not need to
store the entire training data set in memory. Table 1 gives
connections and differences with other PCA techniques.

The proposed approach can be regarded jointly as a
sparsification technique followed by a recursive updating
scheme, both adapted for online processing. Thus, it is related
to sparse techniques for kernel-PCA (beyond naive random
selection), but often inconvenient for online learning. For
instance, sparsification technique based on [26] is studied in
[28] to derive a greedy spectral embedding algorithm.
However, it requires a matrix inversion and an eigen
decomposition at each iteration, rendering it computationally
expensive and thus intractable for online learning. The sparse
kernel-PCA algorithm proposed in [29] approximates the
covariance matrix from a (weighted) subset of available data.
The subset is determined by a maximum likelihood criterion,
based on a probabilistic formulation of PCA. Such an
approach suffers from many drawbacks, mainly for relying
on a probabilistic model for the data. Moreover, an online
version of this technique seems to be impractical. This is also
the case for ‘1-norm penalization with high computational
cost. To circumvent this difficulty, the authors of [30], [31]
derive a projection pursuit scheme to maximize a contrast
function rather than the variance, thereby dropping the
concept of principal components.

Before proceeding, an important issue needs to be
clarified. In classical PCA, one often discards some
dimensions of the data in order to improve the interpret-
ability of the results. This is the essence of principal
variables selection [32]. In this spirit, a sparse PCA is
derived either by incorporating an ‘1-norm penalization in
the classical formulation [33] or by solving a semidefinite
programming problem [34]. This is fundamentally different
from our approach (and the ones described above), as we
seek representatives that describe the data (samples) well,
and not determining the redundant features or proceeding
in a feature selection purpose.

2 PCA AND OJA’S RULE

Let X � IRp be a vector space, with the conventional inner
product hxxxxi; xxxxji ¼ xxxx>i xxxxj for any xxxxi; xxxxj 2 X . The (orthogonal)
projection of any xxxx 2 X onto some vector wwww 2 X is given by
the real-value y ¼ hwwww; xxxxi ¼ wwww>xxxx and the direction (or axis)
defined by wwww. Conventional PCA seeks the axis that
captures most of the variance of the data. This is obtained
by solving the eigen-decomposition problem Cwwww ¼ � wwww,
where C ¼ 1

n

Pn
i¼1 xxxxixxxx

>
i is the covariance of the data

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

TABLE 1
Comparison between Several PCA Algorithms

(assumed centered). The optimal principal axis, denoted wwww�,
is given by the eigenvector associated with the largest
eigenvalue. Since C is a p-by-p matrix, the computational
complexity of such operation is Oðp3Þ.

Consider a set of observations fxxxx1; xxxx2; . . . ; xxxxt; . . .g, with xxxxt
available at time instant t. Oja proposes in [5] to iteratively
learn the first principal axis with the updating rule

wwwwtþ1 ¼ wwwwt þ �tðxxxxtyt � y2
t wwwwtÞ; ð1Þ

where �t is the step size parameter and yt ¼ wwww>t xxxxt ¼ xxxx>t wwwwt.
By examining the incremental change in this expression, the
term xxxxtyt leads to the vector that maximizes the projection,
while the second term constrains its norm. This learning rule
converges to the first principal axis wwww�. To prove this, we
observe that when wwwwt converges to some state wwww, we have
xxxxtyt ¼ y2

t wwww, or equivalently xxxxtxxxx
>
t wwww ¼ wwww>xxxxtxxxx>t wwwwwwww. Averaging

over the whole data, we get the expression Cwwww ¼ wwww>Cwwww wwww.
This is the well-known eigen-decomposition problem of the
covariance matrix, with the eigenvalue wwww>Cwwww correspond-
ing to the squared output y that one wishes to maximize.
Therefore, the resulting vector from (1) converges to the
largest eigenvector of C, namely wwww�.

Now, let us apply these techniques in an RKHS, leading to
nonlinear PCA analysis. Let H be the RKHS induced by the
reproducing kernel �ð�; �Þ, and h� ; �iH its inner product. This
means that for all functions ð�Þ 2 H, we have the evaluation
property ðxxxxÞ ¼ h ð�Þ; �ðxxxx; �ÞiH for any xxxx 2 X , leading to the
reproducing property h�ðxxxxi; �Þ; �ðxxxxj; �ÞiH ¼ �ðxxxxi; xxxxjÞ. Exam-
ples of kernel functions include

. the Gaussian kernel �ðxxxxi; xxxxjÞ ¼ expð�kxxxxi � xxxxjk2=
2�2Þ,

. the exponential kernel �ðxxxxi; xxxxjÞ ¼ expð�kxxxxi � xxxxjk=�Þ,

. and the quadratic kernel �ðxxxxi; xxxxjÞ ¼ jhxxxxi; xxxxji þ 1j2,

where � is a positive parameter defining the kernel
bandwidth.

By representing each xxxx of X by a kernel function �ðxxxx; �Þ
in H, one can apply PCA techniques in the latter space, to
the n kernel functions, �ðxxxx1; �Þ; �ðxxxx2; �Þ; . . . ; �ðxxxxn; �Þ. As
proven by Schölkopf et al. [16], the principal axes lie in
the span of the kernel functions associated with the
available data. In other words, these principal axes (or
principal functions, to be more precise, since we are
working in a functional space, RKHS) take the form

 ð�Þ ¼
Xn
k¼1

�k �ðxxxxk; �Þ; ð2Þ

for n available observations xxxx1; xxxx2; . . . ; xxxxn. Thus, the projec-
tion of �ðxxxx; �Þ onto ð�Þ is given by

 ðxxxxÞ ¼ h ð�Þ; �ðxxxx; �ÞiH ¼
Xn
k¼1

�k �ðxxxxk; xxxxÞ;

where we use both the evaluation and the reproducing
properties. Without getting into details,1 the optimal
coefficients �1; �2; . . .�n, for any arbitrary principal func-
tion, are obtained by diagonalizing the n-by-n so-called

Gram matrix KKKK whose ði; jÞth entry is �ðxxxxi; xxxxjÞ. These
coefficients are normalized such that

Xn
k¼1

�2
k ¼

1

n�r
; ð3Þ

where �r is the corresponding eigenvalue of the matrix C.
The computational complexity to solve such eigen-decom-
position problem is Oðn3Þ, which can be reduced to Oðn2Þ
with recursive techniques, however still unadapted for
online learning.

In order to kernelize Oja’s rule, one wishes to apply it to
the kernel functions in the RKHS. By operating the update
rule (1) in H, the principal function at time instant t is given
by the expression

 tþ1ð�Þ ¼ tð�Þ þ �t ðyt�ðxxxxt; �Þ � y2
t tð�ÞÞ; ð4Þ

where yt ¼ tðxxxxtÞ is the value of the projection of �ðxxxxt; �Þ
onto tð�Þ. This is the essence of the iterative approach
proposed by Kim et al. in [17], [18], where the model (2) is
considered, namely, at instant t,

 tð�Þ ¼
Xn
k¼1

�k;t �ðxxxxk; �Þ: ð5Þ

By injecting this model in (4) and from yt ¼ tðxxxxtÞ, we get
an update rule of the coefficients �1;t; �2;t; . . . ; �n;t, with

����tþ1 ¼ ����t þ �t ytð����t � yt ����tÞ; ð6Þ

where ����t ¼ ½�1;t�2;t � � ��n;t�>. In this expression, ����t ¼
½0 0 � � � 0 1 0 � � � 0 0�> is the sparse n-by-1 column vector of
zeros except for the ðt mod nÞth entry which is set to 1. To
achieve convergence, it is put forward in [17], [18] that this
operation needs to be repeated, up to 800 times, over the
entire available data set, randomly permuted at each sweep.

This algorithm clearly needs not to evaluate the Gram
matrix, and is therefore adapted for large-scale training data
sets. However, as illustrated in the updating rule (6), ����tþ1

and ����t are vectors of n entries, n being the number of
observations. Therefore, the number of observations must be
known in advance and of fixed size, leading to an iterative
technique unadapted for online learning, i.e., infinite stream
of data. This is due to the fact that the model order
corresponds to the number of available data, namely n. To
circumvent this drawback, one has to control the order of the
model, as we propose in the following section.

3 SELECTION CRITERION FOR SUBSPACE CONTROL

Reducing the model order is a very active research area
within the community of researchers in kernel machines
[35], as well as Gaussian processes [36] [37, Chapter 4], since
the underlying models of these methods have the form (2),
as proven by the well-known Representer Theorem [25].
Thus, the computational cost of evaluating this model (on a
new observation) is linear with the number of available
training data. The popularity of SVM is in part ascribed to
cutting down this burden since the resulting model is
constituted of only a small fraction of the training data, the
support vectors. While this still remains expensive for large-
scale data sets compared to neural networks, additionally

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 3

1. See Section 5.2 for a discussion on centering the data in the feature
space.

bringing down the model order may often be required.
Many methods are elaborated for this purpose, following
the work initiated by Burges [38] as well as the wide
literature on sparse representations (see for instance [39],
[40]). For instance, Downs et al. propose in [41] a pruning
technique by removing kernel functions if they can be
approximated by a linear combination of the remaining
ones. In [42], incremental techniques are derived for
controlling the complexity in SVM for classification. For
this task, a selection criterion is considered to determine at
each instant if the newly available kernel function must be
included to the model, and thus incrementing its order, or it
is discarded. Various criteria for quantifying the relevance
of a kernel function in SVM are put forward by Keerthi et al.
in the more recent work [43]. Most selection criteria are
inappropriate for the online kernel-PCA since they are
either computationally expensive and thus unadapted for
online learning, or they are often applied to supervised
learning with training data consisting of input-output
couples by roughly solving a cost functional in order to
determine the resulting improvement. In this paper, we
examine a distance-based selection criterion, initially
investigated for sparse regression [26], [27], and we show
its appropriateness for the online kernel-PCA algorithm.

We propose a m-order model for the (first) principal
function at instant t, with2

 tð�Þ ¼
Xm
k¼1

�k;t �ðxxxx!k ; �Þ; ð7Þ

where the m kernel functions �ðxxxx!k ; �Þ are selected from
the t kernel functions available so far, namely,
f!1; !2; . . . ; !mg � f1; 2; . . . ; tg. At each instant t, upon
arrival of xxxxt, we consider a selection criterion for adding
the kernel function �ðxxxxt; �Þ to the expansion of tð�Þ, thus
incrementing its order. Next, we derive the selection
criterion and study properties of the resulting model, such
as an upper bound on the error of approximating the exact,
full-order, principal functions.

3.1 The Subspace Control Criterion

The reduced-order model (7) defines a subspace,
spanned by the m kernel functions. The error of
approximating any element �ðxxxxt; �Þ by this model is
given by the norm of the residual error function. Let PPPPm

denote the projection operator onto the subspace
spanned by �ðxxxx!1

; �Þ; �ðxxxx!2
; �Þ; . . . ; �ðxxxx!m; �Þ. Then, the

(squared) approximation error of �ðxxxxt; �Þ by a linear
combination of these kernel functions is given by

�t ¼
��ðIIII � PPPPmÞ�ðxxxxt; �Þ

��2

H;

where IIII is the identity operator. Let
Pm

k¼1 �k �ðxxxx!k ; �Þ denote
the projection of �ðxxxxt; �Þ onto this subspace, namely,
PPPPm�ðxxxxt; �Þ, then

�t ¼ min
����

�ðxxxxt; �Þ �
Xm
k¼1

�k �ðxxxx!k ; �Þ
�����

�����
2

H

:

By expanding this norm, we get a matrix notation in terms
of ���� ¼ ½�1�2 � � ��m�>, with

�t ¼ min
����

Xm
k;l¼1

�k�l�ðxxxx!k ; xxxx!lÞ � 2
Xm
k¼1

�k�ðxxxx!k ; xxxxtÞ þ �ðxxxxt; xxxxtÞ

¼ min
����

����> KKKKm ���� � 2����> ����ðxxxxtÞ þ �ðxxxxt; xxxxtÞ;

ð8Þ

where KKKKm is the m-by-m Gram matrix of the m kernel
functions, with entries �ðxxxx!i ; xxxx!jÞ. In this expression, ����ð�Þ is a
column vector whose ith entry is �ðxxxx!i ; �Þ; this is known in
machine learning literature as the empirical kernel map [39],
[44]. By taking the derivative of the above cost function with
respect to ���� and setting it to zero, we get the optimal solution

����t ¼ KKKK�1
m ����ðxxxxtÞ: ð9Þ

By substituting this expression in (8), we get

�t ¼ �ðxxxxt; xxxxtÞ � ����ðxxxxtÞ>KKKK�1
m ����ðxxxxtÞ: ð10Þ

This expression defines the (squared) distance of �ðxxxxt; �Þ to
the subspace spanned by the m kernel functions.

Definition 1 (the distance criterion). Upon arrival of the xxxxt at
instant t, we increment the model order by including the kernel
function �ðxxxxt; �Þ to the model if

�t > 	 ð11Þ

for a given threshold 	; otherwise, the kernel function is
discarded and the model order remains unchanged.

This criterion is considered for instance in [26], [27] for
sparse regression. From these papers (see also [23]), we give
the following lemma.

Lemma 2. Let �ð�; �Þ be a reproducing kernel defined on a
compact subspace X . For any sequence xxxx1; xxxx2; . . . ; xxxx1, the
model resulting from the distance criterion has a finite order.

Sketch of proof. On the one hand, from the compactness of
the subspace X and the continuity of �ðxxxx; �Þ, the resulting
set of kernel functions, �ðxxxx1; �Þ; �ðxxxx2; �Þ . . . ; �ðxxxx1; �Þ, is
compact. Therefore, for any " > 0, there exists a finite set
of ‘2-balls of radius " that covers these kernel functions.
On the other hand, by construction, we have k�ðxxxx!i ; �Þ �
�ðxxxx!j ; �Þk

2
H > 	. By combining both statements, we get the

desired result. tu

While this selection criterion seems unrelated to the
eigen-decomposition problem, we study next the properties
of the retained elements and derive an upper bound on the
approximation error of the principal functions.

3.2 Properties of the Dictionary: The Gaussian
Kernel

In order to take advantage of the literature of dictionaries in
sparse approximation [23], [45], [46], we consider the case of
positive kernels with unit-norm,3 i.e., �ðxxxxi; xxxxiÞ ¼ 1 for any
xxxxi 2 X . This is the case of the well-known Gaussian and

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

2. With a slight abuse of notation, the order is denoted m, while it
depends on time t, and thus one should read mðtÞ.

3. If the unit-norm is violated, such as for the quadratic kernel, one may
substitute each �ðxxxx!i ; �Þ by its normalized counterpart �ðxxxx!i ; �Þ=k�ðxxxx!i ; �Þk.

exponential kernels. Next, we study some properties of the
collection of m kernel functions, f�ðxxxx!1

; �Þ; �ðxxxx!2
; �Þ; . . . ;

�ðxxxx!m; �Þg, henceforth called dictionary.
A dictionary is c-coherent when the inner product

between any pair of its elements does not exceed c, in
absolute value, namely, for any pair of elements

j�ðxxxx!i ; xxxx!jÞj � c;

where the reproducing property h�ðxxxx!i ; �Þ; �ðxxxx!j ; �ÞiH ¼
�ðxxxx!i ; xxxx!jÞ is used.

Lemma 3. The dictionary obtained by the distance criterion is
ð1� 	=2Þ-coherent.

Proof. By construction, we have k�ðxxxx!i ; �Þ � �ðxxxx!j ; �Þk
2
H > 	,

for any i 6¼ j. By expanding this norm, we get
2�ðxxxx!i ; xxxx!jÞ < �ðxxxx!i ; xxxx!iÞ þ �ðxxxx!j ; xxxx!jÞ � 	. tu

This result provides the relation between the threshold 	,
the bandwidth � of the Gaussian kernel, and the spread of the
data since the expression j�ðxxxx!i ; xxxx!jÞj � 1� 	=2 gives the
relation

kxxxx!j � xxxx!jk
2 � �2�2 lnð1� 	=2Þ:

Let KKKKm denote the m-by-m Gram matrix associated with
the dictionary, i.e., with entries �ðxxxx!i ; xxxx!jÞ. The following
theorem provides an upper and lower bounds on its
eigenvalues. The following result is essentially due to
[47], [48].

Theorem 4. The eigenvalues of the dictionary Gram matrix
satisfy the inequalities

1� ðm� 1Þð1� 	=2Þ � �KKKK m
� 1þ ðm� 1Þð1� 	=2Þ:

Proof. The Ger�sgorin discs theorem, applied to matrix KKKKm,
states that the eigenvalues belong to the union of
m discs. For i ¼ 1; 2; . . . ;m, the ith disc is centered on
�ðxxxx!i ; xxxx!iÞ, a diagonal entry of KKKKm, and has a radius ofPm

k¼1;k 6¼i j�ðxxxx!k ; xxxx!iÞj. Thus, all eigenvalues should satisfy

j�KKKK m
� �ðxxxx!i ; xxxx!iÞj �

Xm
k¼1
k 6¼i

j�ðxxxx!k ; xxxx!iÞj � ðm� 1Þð1� 	=2Þ;

for each i ¼ 1; 2; . . . ;m, where the last inequality is due to
Lemma 3. By taking each case eigenvalue greater or
lower than �ðxxxx!i ; xxxx!iÞ, we get the desired bounds. tu
These bounds are sharp, in the sense that equality is

attained for any dictionary of orthonormal kernel functions.
By setting the threshold to 	 ¼ 2, we get such a dictionary,
namely, an incoherent dictionary since �ðxxxx!i ; xxxx!jÞ ¼ 0 for
any i 6¼ j. These results can be used, for instance, to give an
upper bound on the corresponding condition number.

This theorem provides an upper bound on the eigenva-
lues captured by the Gram matrix of the dictionary. Still, we
show next that such a dictionary allows a good approxima-
tion of the exact, full-order, principal functions.

3.3 Error of Approximating the Principal Functions

Let rð�Þ be the rth principal function associated with the rth
largest eigenvalue �r, obtained from the whole t available
data, say rð�Þ ¼

Pt
i¼1 �r;i �ðxxxxi; �Þ. The coefficients �r;i

correspond to the components of the rth eigenvector of
the Gram matrix KKKK, normalized such that

Pt
i¼1 �

2
r;i ¼ 1=t�r.

In practice, the exact principal function is not known within
an online setting. However, its approximation error with
our approach and the subspace that we construct can be
done with low error. The following theorem is essentially
due to [26, Theorem 3.3] (with a slightly different proof).

Theorem 5. The reduced-order model defined by the distance
criterion can approximate the exact principal function rð�Þ,
with a (squared) approximation error upper bounded by

	

�r
;

which is inversely proportional to its associated eigenvalue �r.

Proof. The norm of the residual approximation of the
rth principal function rð�Þ by the m kernel functions is
defined as

kðIIII � PPPPmÞ rð�Þk2
H ¼

Xt
i¼1

�r;iðIIII � PPPPmÞ�ðxxxxi; �Þ
�����

�����
2

H

;

where the equality follows from the linearity of the
operator. To provide an upper bound for this expression,
we write

kðIIII � PPPPmÞ rð�Þk2
H ¼

�����
Xt
i¼1

�r;i ðIIII � PPPPmÞ�ðxxxxi; �Þ
�����

2

H

�
Xt
i¼1

j�r;ij
��ðIIII � PPPPmÞ�ðxxxxi; �Þ

��
H

 !2

�
Xt
i¼1

j�r;ij2
Xt
i¼1

��ðIIII � PPPPmÞ�ðxxxxi; �Þ
��2

H

�
Xt
i¼1

�2
r;i

 !
t 	

¼ 	

�r
;

where the first inequality follows from the generalized
triangular inequality, the second one is due to Cauchy-
Schwarz inequality, the last inequality is due to the
selection criterion, while the last equality follows from
the normalization in the classical kernel-PCA. tu
This result states that we can upper bound the error of

approximating a principal function by a value inversely
proportional to its associated eigenvalue. In other words,
principal functions associated with high eigenvalues can be
approximated with small errors.

4 ONLINE KERNEL-PCA

Motivated by the theoretical results derived in the previous
section and, more precisely, the approximation bounds with
Theorem 5, we consider a subspace approach to solving the
kernelized Oja’s updating rule, as studied next.

4.1 Learning the Principal Function

At instant t upon arrival of a new observation xxxxt, the
distance criterion is applied, leading to either case: The
model order is left unchanged or it is incremented. In both

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 5

cases, the coefficients of the model are adapted appro-

priately, in a recursive scheme.

4.1.1 Case 1: � < 	

In this case, the kernel function �ðxxxxt; �Þ needs not to belong

to the reduced-order model since it can be approximated by

its projection, �pð�Þ. By substituting �ðxxxxt; �Þ with �pð�Þ in

expression (4), we get

 tþ1ð�Þ ¼ tð�Þ þ �t ðyt�pð�Þ � y2
t tð�ÞÞ:

Since �pð�Þ ¼ ����>t ����ð�Þ, where ����t is defined with (9), this leads

to the following updating rule:

����tþ1 ¼ ����t þ �t ðyt����t � y2
t ����tÞ: ð12Þ

This updating rule is essentially the kernelized version of

Oja’s updating rule (4), with the main difference being in

the vector ����t, which is no longer the sparse vector. In this

expression, the output is computed from

yt ¼ tðxxxxtÞ ¼
Xm
k¼1

�k;t�ðxxxx!k ; xxxxtÞ;

which also corresponds to the output of the projected

component.4 It turns out that this is the reduced-order

version (7) of the model defined by the kernelized Oja’s

rule, as in (5).

4.1.2 Case 2: � > 	

In this case, the kernel function cannot be efficiently

approximated by the model and thus should be included

in the model. This leads to a scheme similar to Oja’s (4),

with the model order incremented to mþ 1 and !mþ1 ¼ t.
The updating rule is given by

����tþ1 ¼
����t
0

� �
þ �t yt ����t � yt

����t
0

� �� �
; ð13Þ

where ����tþ1 ¼ ½�1;tþ1 � � ��m;tþ1 �mþ1;tþ1�>, and

����t ¼ ½0 0 0 � � � 0 0 1�> ð14Þ

is the sparse column vector of m zeros with the last entry set

to 1, which we write ����t ¼ ½00>m 1�>. In the expression above,

the output is defined as

yt ¼ tðxxxxtÞ ¼
Xmþ1

k¼1

�k;t �ðxxxx!k ; xxxxtÞ ¼ ����>t ����ðxxxxtÞ; ð15Þ

which is similar to the previous case.

The Gram matrix of the model and its inverse need to be

updated only at the order-incrementation case, while they

are required in the approximation case (Case 1), which often

occurs. This can be seen with the ����s in the projection

expression. The Gram matrix is updated by adding a

column and a row to the previous one, with

KKKKmþ1 ¼
KKKKm ����ðxxxxtÞ

����ðxxxxtÞ> �ðxxxxt; xxxxtÞ

� �
:

One needs the inverse of this matrix in the computation of

the approximation, by the evaluation of (9). For this, we

invoke the well-known matrix identity:

AAAA BBBB

CCCC DDDD

� ��1

¼ AAAA�1 0

0 0

" #
þ �AAAA�1 BBBB

IIII

" #

	 ðDDDD� CCCCAAAA�1BBBBÞ�1½�CCCCAAAA�1IIII�:

By applying this equation to the above definition of KKKKmþ1,

we get the following recursive expression:

KKKK�1
mþ1 ¼

KKKK�1
m 0
0 0

� �
þ 1

�2t

�����
1

� �
�����> 1
� �

: ð16Þ

Therefore, we get the Gram matrix and its inverse without

the need to recompute the whole matrices at each order

incrementation from scratch.
The resulting algorithm is summarized in Table 2. Next,

we consider the problem estimating multiple principal

functions.

4.2 Multiple Principal Functions

The proposed rule extracts online the first principal kernel

function, with ð�Þ ¼ ����> ����ð�Þ. The extension to multiple

principal functions is straightforward, using the generalized

Hebbian algorithm as proposed by Sanger for the linear

principal component analysis [7], [8]. Let f 1;tð�Þ; 2;tð�Þ; . . . ;

 r;tð�Þg denote the collection of r principal functions to be

determined, listed in descending order of eigenvalues.

Then, the jth principal function is given with

 j;tþ1ð�Þ ¼ j;tð�Þ þ �t yj;t �ðxxxxt; �Þ � yj;t
Xj
i¼1

yi;t i;tð�Þ
 !

;

ð17Þ

where yj;t ¼ j;tðxxxxtÞ, for j ¼ 1; 2; . . . ; r. This corresponds to a

Gram-Schmidt orthonormalization process since the above

expression can be written as

 j;tþ1ð�Þ ¼ j;tð�Þ þ �t yj;t

�ðxxxxt; �Þ �

Xj�1

i¼1

yi;t i;tð�Þ
 !

� y2
j;t j;tð�Þ

!
;

which is nothing but Oja’s rule for j;tð�Þ with a modified

input �ðxxxxt; �Þ �
Pj�1

i¼1 yi;t i;tð�Þ, i.e., the component of the

data outside the span of previous principal functions. This

condition restricts the principal functions to be orthogonal

to each others. In matrix form, this leads to an expression of

the form

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

4. The output at any element corresponds to output of its projected
component. This can be shown by decomposing �ðxxxxt; �Þ into �?ð�Þ, a
component orthogonal to the subspace of the m retained kernel functions,
and �pð�Þ, its projection onto the subspace. Then, the output is given as

yt ¼ h tð�Þ; �ðxxxxt; �ÞiH ¼ h tð�Þ; �pð�ÞiH þ h tð�Þ; �?ð�ÞiH.

Since �?ð�Þ is orthogonal to the subspace of tð�Þ, i.e., h tð�Þ; �?ð�ÞiH ¼ 0, we
get

yt ¼ h tð�Þ; �pð�ÞiH.

Another way to see this is to consider the output of the projected
component (the right-hand side of the above expression), namely
����>t KKKKm����t, where ����t ¼ KKKK�1

m ����ðxxxxtÞ from (9); thus, h tð�Þ; �pð�ÞiH ¼ ����>t ����ðxxxxtÞ.

 tþ1ð�Þ ¼ tð�Þ þ �t
	
yyyyt �ðxxxxt; �Þ � LT

	
yyyytyyyy

>
t

 tð�Þ

; ð18Þ

where tð�Þ is a vector of functions, yyyy>t ¼ ½y1;t y2;t � � � yr;t�, and

LTð�Þmakes its argument lower triangular by setting to zero

the entries above its diagonal. Now, we are in a position to

derive the “multiple” version of the online kernel-PCA

algorithm.
Upon arrival of any new observation xxxxt at instant t, two

cases may arise depending on if the distance criterion (11) is

satisfied or not:

. If �t < 	, the model order remains unchanged, say
 j;tð�Þ ¼

Pm
k¼1 �j;k;t �ðxxxx!k ; �Þ for j ¼ 1; 2; . . . ; r. In (18),

�ðxxxxt; �Þ is substituted by its projection �pð�Þ ¼ ����>t ����ð�Þ.
The resulting updating rule can be written as

AAAAtþ1 ¼ AAAAt þ �t
	
yyyyt ����t � LTðyyyytyyyy>t ÞAAAAt

; ð19Þ

where AAAAt ¼ ½����1;t ����2;t � � �����r;t� is the m-by-r matrix

whose jth column corresponds to the coefficients of

the jth principal function with �j;1;t; �j;2;t; . . . ; �j;m;t.
. If �t > 	, the model order is incremented by adding

�ðxxxxt; �Þ to each of the r models with j;tð�Þ ¼Pmþ1
k¼1 �j;k;t �ðxxxx!k ; �Þ f o r j ¼ 1; 2; . . . ; r, w h e r e

!mþ1 ¼ t. This leads to the matrix-form recursion:

AAAAtþ1 ¼
AAAAt

00>r

� �
þ �t yyyyt����t � LTðyyyytyyyy>t Þ

AAAAt

00>r

� �� �
;

with 00r a column vector of r zeros, and ����t ¼ ½00>m1�>.

The resulting algorithm is similar to the one proposed in

Table 2, with the following modifications: The coefficients are

given by the matrix AAAAt, and in the incremental step 4 it is

given by ½AAAA>t 00r�>. The output step 5 is substituted by

yyyyt ¼ AAAA>t ����ðxxxxtÞ, and the updating step is given by (19). The

centering expressions are identical to the ones presented in

the Appendix, which can be found in the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2011.270.
The choice of the appropriate number of retained

components is not studied in this paper. One can still identify

the optimal number of retained principal components r by

studying the distribution of the eigenvalues, as often
investigated in the conventional linear PCA algorithms.
Moreover, the choice of r depends on the value of the
threshold parameter 	. In fact, the latter determines the model
order m, i.e., the number of retained kernel functions in the
span. Thus, one should have r much smaller than m in order
to define a relevant subspace of the span.

5 DISCUSSIONS

Next, we study some issues in online learning with kernel-
PCA: the choice of an appropriate step size, whether or not
to center the data, and denoising with a preimage in a
reduced-order model. Experimental results corroborate this
theoretical analysis, as highlighted in the next section.

5.1 Rate of Convergence

To study the rate of convergence of multiple principal
functions, we consider (17). It is obvious that principal
functions associated with small eigenvalues cannot mature
properly until after those of larger eigenvalues have.
Moreover, since the effect of subtracting the largest variance
directions from the data is to decrease the variance, this will
slow learning of principal functions which mature later (see
[49, page 52] for the convergence of the linear Hebbian
learning algorithm). Since the generalized Hebbian algo-
rithm is essentially a multi-Oja’s rule, one often studies the
convergence of a single Oja’s updating rule.

In order to guarantee convergence, the authors of [50]
derive implicit conditions on the step size parameter for
iterative linear PCA. These results can be easily extended
from the linear to the kernel-based PCA algorithms. For
instance, to get the expected convergence, the step size
parameter should be smaller than the inverse of the largest
eigenvalue. However, the eigenvalues are usually un-
known. One therefore needs to estimate their values and
update them adaptively, as studied in [51] for iterative
kernel-PCA. Yet, the computational effort for such calcula-
tions is quite expensive, making these techniques una-
dapted for online learning.

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 7

TABLE 2
Pseudocode and Summary of the Online Kernel-PCA Algorithm

Back to the conventional Oja’s rule, the convergence
depends on a set of mathematical assumptions. Essentially,
the step size parameter cannot be a constant, but has to
decrease over time, such as �t ¼ �0=t, where �0 is a positive
constant parameter. Such choice is common in the stochastic
approximation literature, with slow convergence when �0 is
small and divergence for large values. In order to overcome
these drawbacks and achieve convergence, a “search then
converge” approach is investigated in [52], with

�t ¼
�0

1þ t=
 : ð20Þ

The tuning parameter
 determines the duration of the
initial search phase, with �t
 �0 (when t�
), before a
converge phase where �t decreases as �0=t (when t�
).
This widely used step size parameter is presented in [53] for
iterative kernel-PCA, but abandoned in favor of computa-
tional expensive eigenvalue-aware step size (as above).

In this paper, we consider the step size parameter as
defined in (20). The choice of the tuning parameter

depends on the application. For a stationary system, we
consider large values of
 , leading to fast convergence. This
is the case of the first series of experiments in next section.
For nonstationary signals, a small value of
 allows more
tracking of the evolution of the system with lower
convergence. This is illustrated in the second application
in the experiments.

5.2 On Centering the Data in Feature Space

In conventional PCA and Oja’s rule, data are assumed
centered, i.e., zero-mean. The kernel function maps the data
into, almost always, an uncentered embedding. Actually,
recentering in the feature space can be done on the Gram
matrix, without ever explicitly computing the map. For the
kernel-PCA algorithm, one simply substitutes the Gram
matrix KKKK by the matrix

KKKK � 1

n
11n11>nKKKK �

1

n
KKKK11n11>n þ

1

n2
11n11>nKKKK11n11>n ; ð21Þ

where 11n is the n-entry 1s column vector. For the iterative
kernel-PCA algorithm, the centering can be carried out
iteratively as long as the number of samples is fixed, with
the so-called semi-online approach [18].

For the proposed online kernel-PCA, the center is
estimated in the tracked subspace, thus of the form
����
>
t ����ðxxxxÞ, for a vector ����t updated recursively (see the

Appendix, available in the online supplemental material).
This leads to an expression similar to (21), with

KKKKm � 11m����
>
t KKKKm �KKKKm����t11

>
m þ 11m����

>
t KKKKm����t11

>
m:

The resulting model output is given as yt ¼ ����>t ����cðxxxxtÞ for a
single principal function, and

yyyyt ¼ AAAA>t ����cðxxxxtÞ;

for multiple principal functions, where the initial vector
����ðxxxxtÞ in (15) is substituted with

����cðxxxxtÞ ¼ ����ðxxxxtÞ � 11m����
>
t ����ðxxxxtÞ �KKKKm����t þ 11m����

>
t KKKKm����t:

The derivation of these expressions is carried out in the
Appendix, available in the online supplemental material,

where we derive an online centering within the tracked
subspace. This leads to two variants of the proposed
approach, an uncentered and a centered version.

In the uncentered setting, the resulting principal functions
are linear combinations of the uncentered kernel functions.
This corresponds to an online eigen decomposition of the
noncentral second moment matrix of data in the feature
space. In a more statistically appropriate principle, one
considers zero-mean data by simply centering at the origin. It
remains an open question whether features should be
extracted from a centered or an uncentered approach, even
in the case of conventional (linear and batch) PCA. In a
centered PCA, the variability about the center of the data is
concerned, as opposed to the variability about the origin in its
uncentered counterpart. Still, the relationships between both
variants are strong, as studied in [54] and summarized here.
The eigenvalues in the uncentered problem are interlaced
with those in the centered one, and many eigenvectors are
commonly similar. It is very often that the first eigenvector in
the uncentered case is close to the direction that unites the
origin and the center of the data. All these results derived for
linear PCA can be easily extended to kernel-PCA and our
online kernel-PCA approach. Experimental results high-
lights these results with the proposed algorithm.

5.3 Denoising Scheme with a Preimage in the
Reduced-Order Model

The denoising in feature space is carried out in three stages.
First, the principal functions are estimated from a set of

noisy observations, for instance with the method proposed
in this paper. From n available data, let AAAAn denotes the
resulting matrix of coefficients whose r columns define the
r principal functions. It is assumed that these principal
functions are noise free, while noise is captured by the less
relevant ones. Let ð�Þ ¼ ½ 1ð�Þ 2ð�Þ � � � rð�Þ�> denote the
vector of obtained functions (as defined for instance in (18)).

Second, to denoise any data xxxx in the feature space, it is
projected into the subspace spanned by the most relevant
principal functions. Since these functions define a basis, we
can write this projection

PPPP ð�ðxxxx; �ÞÞ ¼
Xr
j¼1

h jð�Þ; �ðxxxx; �Þi jð�Þ

¼
Xm
k¼1

Xr
j¼1

 jðxxxxÞ �k;j �ðxxxx!k ; �Þ

¼
Xm
k¼1

½AAAAnyyyy�k �ðxxxx!k ; �Þ;

where yyyy ¼ AAAA>n ����cðxxxxÞ. While the resulting projection is still
centered, one may decenter by adding �nð�Þ, leading to

PPPP ð�ðxxxx; �ÞÞ þ �nð�Þ ¼ ðAAAAnyyyyþ ����nÞ ����ð�Þ: ð22Þ

The resulting signature still lives in the feature space, often
of infinite dimension.

In the third stage, one needs to preimage the pattern back to
the input space, i.e., find the pattern xxxx� in the input space
whose image �ðxxxx�; �Þ is as close as possible to the denoised
signature (22). Several techniques have been derived to tackle
this ill-posed problem. For a recent review, see [55]. While
solving the preimage problem is less tractable in full-order

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

models, we show next how the reduced-order model provide
tractable solutions.

In [56], we show that the preimage can be roughly solved
using a conformal-map approach, with only matrix inver-
sion. Applied here for the signature (22), the preimage
solution is given by solving the linear system

XX>mxxxx
� ¼

	
PPPPm � �KKKK�1

m

ðAAAAnyyyyþ ����nÞ;

where XXm ¼ ½xxxx!1
xxxx!2
� � �xxxx!m �, PPPPm ¼ XX>mXXm is the matrix of

inner products in the input space, and � a regularization
parameter (set to 10 in experiments). Note that the matrix
KKKKm is nonsingular by construction, as stated in Theorem 4.

Another way to solve the preimage problem is to
consider the minimization of

Jðxxxx�Þ ¼ kðAAAAnyyyyþ ����nÞ> ����ð�Þ � �ðxxxx�; �Þk2:

The gradient, associated with the Gaussian kernel, is given as

rxxxxJðxxxx�Þ ¼
1

�2

Xm
k¼1

½AAAAnyyyy�k ðxxxx!k � xxxx�Þ expðkxxxx!k � xxxx�k
2=2�2Þ:

Once again, the use of a reduced-order model provides a
tractable expression with a summation over m entries, as
opposed to the n-order expression for the full-order model.
In [57], a gradient descent algorithm is proposed with a
nonnegativity constraint. It is essentially based on the above
gradient expression, with a step size weighted by the value
of xxxx�. This leads to a faster convergence toward zero-
intensity pixels in image processing (see experimentations
where only a single step is applied).

6 EXPERIMENTS

In this section, we illustrate the performance of the
proposed approach, on synthetic and real data sets, and
compare it to kernel-PCA and iterative kernel-PCA.

In order to measure the variance and its evolution, we
consider the variance in the feature space. The variance
explained by each principal function j;tð�Þ is defined at
each instant t by

Varxxxxð j;tðxxxxÞÞ ¼ IExxxx

	
j j;tðxxxxÞj2

�
��IExxxx j;tðxxxxÞ

	
��2; ð23Þ

where

IExxxx

	
 j;tðxxxxÞ

¼ IExxxx

 Xm
k¼1

�j;k;t �ðxxxx!k ; xxxxÞ
!

¼
Xm
k¼1

�j;k;t IExxxx

	
�ðxxxx!k ; xxxxÞ

;

and IExxxx

	
j j;tðxxxxÞj2

¼ IExxxx

Xm
k¼1

�j;k;t �ðxxxx!k ; xxxxÞ
�����

�����
2

0
@

1
A:

In practice, the expectation is estimated at each instant t
over all available observations, including future samples xxxxt0

for t0 > t. The instant cumulative variance, explained by all
r principal functions, is defined by

Pr
j¼1 Varxxxxð j;tðxxxxÞÞ.

6.1 Banana-Shaped 2D Distribution

In this first series of experiments, we compared the
proposed approach to the classical kernel-PCA algorithm

and the iterative kernel-PCA. A set of n ¼ 500 2D data
points in a banana-shaped distribution was used, as
illustrated in Fig. 1. The Gaussian kernel, often put forward
as a universal kernel, was considered. The tuning para-
meters, which depend on the shaper and scale of the data
distribution, were (naively) set to � ¼ 0:5 for the bandwidth
of the Gaussian kernel, 	 ¼ 0:5 for the selection threshold,
and �0 ¼ 0:5 for the asymptotic value of the step size
parameter. The convergence parameter was set to
 ¼ 105 (a
study of the convergence is conducted below).

With such a value of the threshold, we get an 8-order
model for each of the principal functions, namely, 1.6 percent
of the training data, as opposed to the full-order model
(100 percent) for both the kernel-PCA and the iterative
kernel-PCA. Essentially, the iterative kernel-PCA algorithm
consists of applying our algorithm several times on the same
data and setting 	 ¼ 0. Similarities between the results
obtained from these three algorithms are illustrated in
Fig. 1 (first, second, and third row), with contour lines of
the first five principal functions, j;tð�Þ for j ¼ 1; 2; . . . ; 5 at
t ¼ 500. It is obvious that the proposed reduced-order model
(with order m ¼ 8 here) with the derived updating rule
captures the structure of the data, with basically the same
performances as the (batch) kernel-PCA and the iterative
kernel-PCA, both being full-ordered (m ¼ 500).

These results were obtained from the centered versions of
the considered algorithms, as often investigated in the
literature. Still, one may also consider the uncentered
version of our algorithm. As studied in Section 5.2 and
illustrated in Fig. 1 (last row), the first principal function
captures the variability about the center of the data. It is
clear that all the other principal functions, j;t for j ¼
2; 3; . . . ; 5 at t ¼ 500, capture essentially the same structure
as the centered version. Still, the last principal function
(j ¼ 6) did not mature enough at t ¼ 500, and requires more
data to converge to the optimal results. Next, we study the
convergence issue.

In order to study the convergence of the proposed
algorithm (in its centered version), we studied the instanta-
neous captured variance as defined by expression (23), where
the expectations are estimated over all available samples.
Moreover, we incremented the above set of data into n ¼
3;000 samples. The selection criterion yields a 10-order model
for each of the principal functions, namely, 0.3 percent of the
training data. Fig. 2 illustrates the evolution of the variance
explained by each of the five principal functions, as well as
the cumulative variance. As expected, the relevance of each
principal function is illustrated in terms of the explained
variance. The convergence of the instant cumulative var-
iance, explained by the five principal functions, depends on
the choice of the convergence parameter
 . Fig. 3 illustrates
this influence, where small values of
 lead to slow
convergence while large values correspond to a “search
without convergence” strategy.

6.2 Image Denoising

In this section, we consider an image processing applica-
tion, with the MNIST database of handwritten digits [58].
This data set consists of the handwritten digits “1”, “2”,
and “3” given in 28-by-28 images with pixel-values
normalized between 0 and 1. The data set consists of

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 9

22,008 available images, treated as 784-dimensional vectors.

All images were contaminated with a white Gaussian noise

of zero-mean and variance 0.1. We studied a denoising

scheme, where n ¼ 22;000 images were considered for

learning the principal functions, and the remaining eight

images for denoising. We emphasize on the fact that the

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

Fig. 2. Evolution of the variance explained by each principal function and the cumulative variance explained by all the r ¼ 6 principal functions.

Instances of model incrementation are given by �.

Fig. 1. Banana data with the contours of the first five principal functions with the Gaussian kernel, from n ¼ 500 samples. The first three rows confront
classical kernel-PCA, iterative kernel-PCA (single pass), and online kernel-PCA. Results obtained with the uncentered version of our approach (fifth
row) show that, besides the first principal function, which captures the center of the data, all of the next five principal functions are quite similar to
those obtained with the centered version (fourth row). Data points are given in the first row by blue dots (����), while only elements contributing to the
model are illustrated by red circles (
).

principal functions are determined from a collection of

noisy images.
With such a very large-scale problem, the classical

kernel-PCA is no longer tractable since it requires the
diagonalization of a 22,000-by-22,000 Gram matrix. An
online scheme was considered here, where the images are
presented one-by-one to the proposed (centered) online
kernel-PCA algorithm. Each image was selected randomly
from the set of available images, and is used only once. The
values of the tunable parameters were set as often
recommended in the literature. The Gaussian kernel was
used with its bandwidth set to � ¼ 8:5, as recommended in
the SVM classification task. As given in [53], the number of
eigenvectors was set to 50 and the step size parameters
were set to
 ¼ 0:05n and � ¼ 1 (see Section 5.1 for a
discussion about the influence of these parameter). Pre-
liminary experiments on the first 100 images were con-
ducted in order to choose the value of the threshold in the

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 11

Fig. 3. Evolution of the variance explained by each principal function for several convergence parameters.

Fig. 4. Evolution of the variance explained by each principal function for the image denoising problem. The legend is the same as in Fig. 2.

Fig. 5. Evolution of the mean of each principal function at each instant t,
where IExxxx j;tðxxxxÞ is estimated with 1

n

Pn
‘¼1 j;tðxxxx‘Þ for n ¼ 22;000.

selection criterion, which was set to 	 ¼ 0:55. This leads to a
model of final order m ¼ 90, thus with only 0.4 percent of
the available data.

Fig. 4 gives the evolution of the captured variance, as

defined in (23). As we considered the centered version of the

online kernel-PCA, it turns our that the second term in the

right-hand side converges to zero. This is illustrated in Fig. 5

where, at every instant t, the principal functions were

updated with the mean estimated over the whole data set,

namely, 1
n

Pn
‘¼1 j;tðxxxx‘Þ for n ¼ 22;000. The relevance of the

resulting principal functions is studied in a denoising

scheme, as illustrated in Fig. 6. As shown using two different

preimage techniques (see Section 5.3), the resulting images

are clean, even though the principal functions were trained

from noisy images. With the iterative gradient technique, the

step size was set to 100 and weighted by the value of xxxx�, a

trick that allows better convergence toward zero-intensity

pixels. This leads to faster convergence, with the denoised

results obtained from only one single gradient-descent step.

7 CONCLUSION

In this paper, we proposed an online kernel principal

component algorithm. To this end, we studied the adapta-

tion of Oja’s rule to kernel machines by proposing an

appropriate rule to control the model order. We gave

theoretical results on errors of using such reduced-order

model. We derived a recursive algorithm for computing a

principal function, and studied the case of having multiple

functions. In light of the considered model, we studied

convergence rate, centering in feature space, and denoising

by preimaging. Experimental results show the relevance of

these functions on synthetic and real data sets. This work

lays the ground for interesting future research questions. An

adaptive step size is still an open question, and techniques

such as Polyak-Ruppert averaging are investigated.

ACKNOWLEDGMENTS

The author would like to thank Cédric Richard for the

helpful discussions.

REFERENCES

[1] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.
[2] P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders, “Methods

for Modifying Matrix Factorizations,” Math. Computation, vol. 28,
pp. 505-535, Apr. 1974.

[3] J.R. Bunch and C.P. Nielsen, “Updating the Singular Value
Decomposition,” Numerische Mathematik, vol. 31, pp. 111-129, 1978.

[4] P. Hall, D. Marshall, and R. Martin, “Merging and Splitting
Eigenspace Models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 9, pp. 1042-1049, Sept. 2000.

[5] E. Oja, “A Simplified Neuron Model as a Principal Component
Analyzer,” J. Math. Biology, vol. 15, pp. 267-273, 1982.

[6] E. Oja and J. Karhunen, “On Stochastic Approximation of the
Eigenvectors and Eigenvalues of the Expectation of a Random
Matrix,” J. Math. Analysis and Applications, vol. 106, pp. 69-84, 1985.

[7] T.D. Sanger, “Optimal Unsupervised Learning in a Single-Layer
Linear Feedforward Neural Network,” Neural Networks, vol. 2,
pp. 459-473, 1989.

[8] T.D. Sanger, “Two Iterative Algorithms for Computing the
Singular Value Decomposition from Input/output Samples,”
Advances in Neural Information Processing Systems, J.D. Cowan, G.
Tesauro, and J. Alspector, eds., vol. 6, pp. 144-151, 1993.

[9] N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Am. Math.
Soc., vol. 68, pp. 337-404, 1950.

[10] V. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[11] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical
Foundations of the Potential Function Method in Pattern
Recognition Learning,” Automation and Remote Control, vol. 25,
pp. 821-837, 1964.

[12] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. Müller, “Fisher
Discriminant Analysis with Kernels,” Advances in Neural Networks
for Signal Processing, Y.H. Hu, J. Larsen, E. Wilson, and S. Douglas,
eds., pp. 41-48, Morgan Kaufmann, 1999.

[13] R. Rosipal and L. Trejo, “Kernel Partial Least Squares Regression
in Reproducing Kernel Hilbert Space,” J. Machine Learning
Research, vol. 2, pp. 97-123, 2002.

[14] V. Guigue, A. Rakotomamonjy, and S. Canu, “Kernel Basis
Pursuit,” Proc. 16th European Conf. Machine Learning, J. Gama,
R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, eds., pp. 146-157,
2005.

[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge Univ. Press, 2004.

[16] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural Computation,
vol. 10, no. 5, pp. 1299-1319, 1998.

[17] K. Kim, M. Franz, and B. Schölkopf, “Kernel Hebbian Algorithm
for Iterative Kernel Principal Component Analysis,” Technical
Report 109, Max-Planck-Institut für Biologische Kybernetik,
Tübingen, Germany, 06, 2003.

[18] K. Kim, M. Franz, and B. Schölkopf, “Iterative Kernel Principal
Component Analysis for Image Modeling,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1351-1366, Sept.
2005.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

Fig. 6. The collection of eight images, contaminated by noise (first row) and denoised by our approach, using a matrix-inversion technique (second
row) or an gradient descent technique (third row).

[19] J. Kivinen, A.J. Smola, and R.C. Williamson, “Online Learning
with Kernels,” IEEE Trans. Signal Processing, vol. 52, no. 8,
pp. 2165-2176, Aug. 2004.

[20] S. Smale and Y. Yao, “Online Learning Algorithms,” Foundation
Computational Math., vol. 6, no. 2, pp. 145-170, 2006.

[21] S.V. Vishwanathan, N.N. Schraudolph, and A.J. Smola, “Step Size
Adaptation in Reproducing Kernel Hilbert Space,” J. Machine
Learning Research, vol. 7, pp. 1107-1133, 2006.

[22] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online Passive-Aggressive Algorithms,” J. Machine Learning
Research, vol. 7, pp. 551-585, 2006.

[23] C. Richard, J.C.M. Bermudez, and P. Honeine, “Online Prediction
of Time Series Data with Kernels,” IEEE Trans. Signal Processing,
vol. 57, no. 3, pp. 1058-1067, Mar. 2009.

[24] G. Kimeldorf and G. Wahba, “Some Results on Tchebycheffian
Spline Functions,” J. Math. Analysis and Applications, vol. 33,
pp. 82-95, 1971.

[25] B. Schölkopf, R. Herbrich, and R. Williamson, “A Generalized
Representer Theorem,” Technical Report NC2-TR-2000-81,
NeuroCOLT, Royal Holloway College, Univ. of London, 2000.

[26] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least
Squares Algorithm,” IEEE Trans. Signal Processing, vol. 52, no. 8,
pp. 2275-2285, Aug. 2004.

[27] L. Csató and M. Opper, “Sparse Representation for Gaussian
Process Models,” Advances in Neural Information Processing
Systems, T.K. Leen, T.G. Dietterich, and V. Tresp, eds., vol. 13,
pp. 444-450, 2001.

[28] M. Ouimet and Y. Bengio, “Greedy Spectral Embedding,” Proc.
10th Int’l Workshop Artificial Intelligence and Statistics, R.G. Cowell
and Z. Ghahramani, eds., pp. 253-260, 2005.

[29] M.E. Tipping, “Sparse Kernel Principal Component Analysis,”
Advances in Neural Information Processing Systems, T.K. Leen,
T.G. Dietterich, and V. Tresp, eds., vol. 13, pp. 633-639, 2001.

[30] A. Smola, O. Mangasarian, and B. Schölkopf, “Sparse Kernel
Feature Analysis,” Technical Report 99-04, Univ. of Wisconsin,
Data Mining Inst., Madison, 1999.

[31] Z.K. Gon, J. Feng, and C. Fyfe, “A Comparison of Sparse Kernel
Principal Component Analysis Methods,” Proc. Int’l Conf. Knowl-
edge-Based Intelligent Eng. Systems and Allied Technologies,
R.J. Howlett and L.C. Jain, eds., pp. 309-312, 2000.

[32] G.P. McCabe, “Principal Variables,” Technometrics, vol. 26,
pp. 137-144, May 1984.

[33] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component
Analysis,” J. Computational & Graphical Statistics, vol. 15, pp. 265-
286, June 2006.

[34] A. d’Aspremont, F.R. Bach, and L.E. Ghaoui, “Full Regularization
Path for Sparse Principal Component Analysis,” Proc. 24th Int’l
Conf. Machine Learning, pp. 177-184, 2007.

[35] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G.
Rätsch, and A.J. Smola, “Input Space versus Feature Space in
Kernel-Based Methods,” IEEE Trans. Neural Networks, vol. 10,
no. 5, pp. 1000-1017, Sept. 1999.

[36] L. Csató and M. Opper, “Sparse Online Gaussian Processes,”
Neural Computation, vol. 14, pp. 641-668, 2002.

[37] M. Seeger, “Bayesian Gaussian Process Models: PAC-Bayesian
Generalisation Error Bounds and Sparse Approximations,” PhD
thesis, Inst. of Adaptive and Neural Computation, Univ. of
Edinburgh, 2003.

[38] C. Burges, “Simplified Support Vector Decision Rules,” Proc. 13th
Int’l Conf. Machine Learning, pp. 71-77, 1996.

[39] M. Wu, B. Schölkopf, and G. Bakir, “A Direct Method for Building
Sparse Kernel Learning Algorithms,” J. Machine Learning Research,
vol. 7, pp. 603-624, 2006.

[40] S. Agarwal, V.V. Saradhi, and H. Karnick, “Kernel-Based Online
Machine Learning and Support Vector Reduction,” Neurocomput-
ing, vol. 71, nos. 7-9, pp. 1230-1237, 2008.

[41] T. Downs, K.E. Gates, and A. Masters, “Exact Simplification of
Support Vector Solutions,” J. Machine Learning Research, vol. 2,
pp. 293-297, 2001.

[42] E. Parrado-Hernández, I. Mora-Jiménez, J. Arenas-Garcı́a, A.R.
Figueiras-Vidal, and A. Navia-Vázquez, “Growing Support Vector
Classifiers with Controlled Complexity,” Pattern Recognition,
vol. 36, no. 7, pp. 1479-1488, 2003.

[43] S.S. Keerthi, O. Chapelle, and D. DeCoste, “Building Support
Vector Machines with Reduced Classifier Complexity,” J. Machine
Learning Research, vol. 7, pp. 1493-1515, 2006.

[44] B. Schölkopf and A.J. Smola, Learning with Kernels. MIT Press,
2002.

[45] J.A. Tropp, A.C. Gilbert, S. Muthukrishnan, and M. Strauss,
“Improved Sparse Approximation over Quasi-Incoherent Diction-
aries,” Proc. Int’l Conf. Image Processing, vol. 1, pp. 37-40, 2003.

[46] A.C. Gilbert, S. Muthukrishnan, and M.J. Strauss, “Approximation
of Functions over Redundant Dictionaries Using Coherence,”
Proc. 14th ACM-SIAM Symp. Discrete Algorithms, pp. 243-252, 2003.

[47] J.A. Tropp, “Greed Is Good: Algorithmic Results for Sparse
Approximation,” IEEE Trans. Information Theory, vol. 50, no. 10,
pp. 2231-2242, Oct. 2004.

[48] P. Honeine, C. Richard, and J.C.M. Bermudez, “On-Line Non-
linear Sparse Approximation of Functions,” Proc. IEEE Int’l Symp.
Information Theory, pp. 956-960, June 2007.

[49] T.D. Sanger, “Optimal Unsupervised Learning in Feedforward
Neural Networks,” technical report, MIT, 1989.

[50] L.-H. Chen and S. Chang, “An Adaptive Learning Algorithm for
Principal Component Analysis,” IEEE Trans. Neural Networks,
vol. 6, no. 5, pp. 1255-1263, Sept. 1995.

[51] N.N. Schraudolph, S. Günter, and S.V.N. Vishwanathan, “Fast
Iterative Kernel PCA,” Advances in Neural Information Processing
Systems, vol. 19, pp. 1225-1232, 2007.

[52] C. Darken, J. Chang, and J. Moody, “Learning Rate Schedules for
Faster Stochastic Gradient Search,” Proc. IEEE Workshop Neural
Networks for Signal Processing, 1992.

[53] S. Günter, N.N. Schraudolph, and S.V.N. Vishwanathan, “Fast
Iterative Kernel Principal Component Analysis,” J. Machine
Learning Research, vol. 8, pp. 1893-1918, Dec. 2007.

[54] J. Cadima and I. Jolliffe, “On Relationships between Uncentred
and Column-Centred Principal Component Analysis,” Pakistan
J. Statistics, vol. 25, no. 4, pp. 473-503, 2009.

[55] P. Honeine and C. Richard, “Preimage Problem in Kernel-Based
Machine Learning,” IEEE Signal Processing Magazine, vol. 28, no. 2,
pp. 77-88, Mar. 2011.

[56] P. Honeine and C. Richard, “Solving the Pre-Image Problem in
Kernel Machines: A Direct Method,” Proc. 19th IEEE Workshop
Machine Learning for Signal Processing, Sept. 2009.

[57] M. Kallas, P. Honeine, C. Richard, C. Francis, and H. Amoud,
“Non-Negative Pre-Image in Machine Learning for Pattern
Recognition,” Proc. 19th European Conf. Signal Processing, Aug./
Sept. 2011.

[58] Y. Lecun and C. Cortes, “The MNIST Database of Handwritten
Digits,” http://yann.lecun.com/exdb/mnist/, 1998.

Paul Honeine received the Dipl-Ing degree in
mechanical engineering in 2002 and the MSc
degree in industrial control in 2003, both from
the Faculty of Engineering, the Lebanese Uni-
versity, Lebanon. In 2007, he received the PhD
degree in systems optimization and security
from the University of Technology of Troyes,
France, and was a postdoctoral research as-
sociate with the Systems Modeling and Depend-
ability Laboratory from 2007 to 2008. Since

September 2008, he has been an assistant professor at the University of
Technology of Troyes, France. His research interests include nonsta-
tionary signal analysis and classification, nonlinear signal processing,
sparse representations, machine learning, and wireless sensor net-
works. He is the coauthor (with C. Richard) of the paper which received
the 2009 Best Paper Award at the IEEE Workshop on Machine Learning
for Signal Processing. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HONEINE: ONLINE KERNEL PRINCIPAL COMPONENT ANALYSIS: A REDUCED-ORDER MODEL 13

