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[An intimate connection

with the dimensionality-

reduction problem]

K
ernel machines have gained con-
siderable popularity during the
last 15 years, making a break-
through in nonlinear signal process-
ing and machine learning, thanks

to extraordinary advances. This increased interest is
undoubtedly driven by the practical goal of being able

to easily develop efficient nonlinear algorithms. The key
principle behind this, known as the kernel trick, exploits the

fact that a great number of data-processing techniques do not
explicitly depend on the data itself but rather on a similarity measure

between them, i.e., an inner product. To provide a nonlinear extension of these techni-
ques, one can apply a nonlinear transformation to the data, mapping them onto some

feature space. According to the kernel trick, this can be achieved by simply replacing the inner product with a
reproducing kernel (i.e., positive semidefinite symmetric function), the latter corresponds to an inner product
in the feature space. One consequence is that the resulting nonlinear algorithms show significant performance
improvements over their linear counterparts with essentially the same computational complexity.

While the nonlinear mapping from the input space to the feature space is central in kernel methods, the
reverse mapping from the feature space back to the input space is also of primary interest. This is the case
in many applications, including kernel principal component analysis (PCA) for signal and image denoising.
Unfortunately, it turns out that the reverse mapping generally does not exist and only a few elements in the
feature space have a valid preimage in the input space. The preimage problem consists of finding an approx-
imate solution by identifying data in the input space based on their corresponding features in the high-
dimensional feature space. It is essentially a dimensionality-reduction problem, and both have been
intimately connected in their historical evolution, as studied in this article.
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AN INTRODUCTORY EXAMPLE:
KERNEL PCA FOR DENOISING

LINEAR DENOISING WITH PCA
In general, some correlations exist among data, thus techniques
for dimensionality reduction or the so-called feature extraction
provide a way to confine the initial space to a subspace of lower
dimensionality. The PCA, also known as Karhunen-Loève transfor-
mation, is one of the most widely used dimensionality-reduction
techniques. Conventional PCA seeks principal directions that cap-
ture the highest variance in the data. Mutually orthonormal, these
directions define the subspace, exhibiting information rather than
noise, providing the optimal linear transformation. Here, the opti-
mality is in the sense of least-mean-square reconstruction error.
For instance, in data compression and manifold learning, much
information is conserved by projecting onto the directions of high-
est variance, while in denoising, directions with small variance are
dropped. These schemes are mathematically equivalent, and we
use here a denoising schema without loss of generality.

Consider an input space X endowed by the inner product
h�, �i; for instance, a vectorial space with the Euclidean inner
product hxi , xji ¼ x>i xj. Let fx1, x2, . . . , xng denote a set of avail-
able data (observations) from X . PCA techniques seek the axes
that maximize the mean variance of the projected data under
the unit-norm constraint, namely, w1,w2, . . . ,wk by maximiz-
ing (1=n)

Pn
i¼1 jhxi ,w‘ij2 subject to hw‘,w‘0 i ¼ d‘‘0 for all

‘, ‘0 ¼ 1, 2, . . . , k. In this expression, the Kronecker delta is
defined as d‘‘0 ¼ 1 if ‘ ¼ ‘0, and d‘‘0 ¼ 0 otherwise. Solving this
constrained optimization problem using the Lagrangian pro-
vides the following problem:

k‘ w‘ ¼ Cw‘, (1)

where k‘ defines the amount of variance captured by w‘, and C is
the covariance matrix of the data. In other words, (k‘,w‘) is the
eigenvalue–eigenvector of the covariance matrix, data assumed
zero-mean. Furthermore, eigenvectors lie in the span of the
data, since for every ‘ ¼ 1, 2, . . . , kwe have

w‘ ¼
1
k‘

Cw‘ ¼
1

k‘ n

Xn
i¼1

hxi,w‘i xi:

The eigenvectors associated with the largest eigenvalues
provide a relevant low-dimensional subspace. As a conse-
quence, we are interested in elements from this relevant sub-
space. This is the case, for instance, in data denoising, where
the projection of a given noisy data onto this subspace provides
its noise-free counterpart. Therefore, the latter can be written
as an expansion of the eigenvectors, namely, for a noisy data ~x,
we get the denoised w ¼Pk

i¼1h~x,wiiwi, and from the afore-
mentioned expression, as a linear expansion in terms of the
available data, by taking the form

w ¼
Xn
i¼1

ai xi:

KERNEL PCA FOR NONLINEAR DENOISING
To provide a natural nonlinear extension of PCA, a nonlinear
mapping is applied to the data as a preprocessing stage, prior to
applying the PCA algorithm. Let /( � ) be the nonlinear transfor-
mation mapping data from the input space X to some feature
space H. Then problem (1) essentially remains the same, with
the covariance matrix associated to the transformed data. From
the linear expansion with respect to the latter, the resulting
principal axes take the form

w‘ ¼
Xn
i¼1

h/(xi),w‘iH /(xi), (2)

where h�, �iH denotes the inner product in the feature space H.
In this space, each feature w‘ lies in the span of the mapped
input data, with the coefficients given by the ‘th eigenvector of
the eigenproblem

n k‘ a‘ ¼ K a‘, (3)

whereK is the so-called Grammatrix with entries h/(xi),/(xj)iH,
for i, j ¼ 1, 2, . . . , n. As illustrated here, the expansion coeffi-
cients require only the evaluation of the inner products. With-
out the need to exhibit the mapping function, this information
can be easily exploited for a large class of nonlinearities by sub-
stituting the inner product with a positive semidefinite kernel
function. This argument is the kernel trick, which provides a non-
linear counterpart of the classical PCA algorithm, the so-called
kernel PCA [1].

Consider the denoising application using kernel PCA. For a
given ~x, its nonlinear transformation /(~x) is projected onto the
subspace spanned by the most relevant principal axes, providing
the denoised pattern. The latter can be written as a linear expan-
sion of the k principal axes, w1,w2, . . . ,wk, with

w ¼
Xk
i¼1

hx,wiiwi: (4)

Equivalently, the denoised pattern can also be written as a lin-
ear expansion of the n images of the training data, namely
w ¼Pn

i¼1 ai /(xi), where the expansion in (2) is used. In prac-
tice, one is interested in representing the denoised pattern in
the input space, as illustrated in Figure 1. It turns out that
most elements of the feature space, including the denoised pat-
terns, are not valid images, i.e., the result of applying the map
to some input data. To get the denoised counterpart in the
original input space, one needs to operate an approximation
scheme, i.e., estimate x� such that its image /(x�) is as close as
possible to w.

Beyond this kernel-PCA example, the kernel trick is well
known in the machine-learning community. It provides flexibil-
ity to derive nonlinear techniques based on linear ones, with the
data being implicitly mapped into a feature space. This space is
given by the span of the mapped data, i.e., all the linear expan-
sions of mapped data. The price to pay is that, in general, not
each element of the space is necessarily the image of some data.



IEEE SIGNAL PROCESSING MAGAZINE   [79]   MARCH 2011

This is the case of most elements in the feature space, since they
can be written as

w ¼
Xn
i¼1

ai /(xi),

as illustrated earlier with either a principal axe w‘ or a denoised
feature w. To give proper interpretation for these components,
one should define the way back from the feature into the input
space. This is the preimage problem in kernel-based machine
learning, as illustrated in Figure 2.

KERNEL-BASED MACHINE LEARNING
In the past 15 years or so, a novel breakthrough for artificial
neural networks has been achieved in the field of pattern recog-
nition and classification within the framework of kernel-based
machine learning. They have gained wide popularity owing to
the theoretical guarantees regarding performance and low com-
putational complexity in nonlinear algorithms. Pioneered by
Vapnik’s support vector machines (SVMs) for classification and
regression [2], kernel-based methods are nonlinear algorithms
that can be adapted to an extensive class of nonlinearities. As a
consequence, they have found numerous applications, including

x̃
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φ (x )˜φ (x )

(a) (b)

ψ

[FIG2] Schematic illustration of the preimage problem for pattern denoising with kernel PCA. While dimensionality reduction
through orthogonal projection is performed in the (b) feature space, a preimage technique is required to recover the denoised
pattern in the (a) input space.
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[FIG1] Kernel machines map the input space [blue region in (a)] into a higher-dimensional space [blue region in (b)]. The reproducing
kernel Hilbert space (rkHs)H is defined as the completion of the span of the mapped input data, with elements written as a linear
expansion of mapped data. However, not each element ofH is necessarily the image of some input data. The preimage problem
consists of going back to the input space, e.g., to represent in the input space elements of the rkHs (e.g., the effect of projecting
onto a subspace).
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classification [3], regression [4], time-series prediction [5], novelty
detection [6], image denoising [7], and bioengineering [8], to
name just a few (see, e.g., [9] for a review).

REPRODUCING KERNELS AND rkHs
Originally proposed by Aizerman et al. in [10], the kernel trick
provides an elegant mathematical means to derive powerful
nonlinear variants of classical linear techniques. Most well-
known statistical (linear) techniques can be formulated as an
inner product between pairs of data. Thus, applying any non-
linear transformation to the data can only impact the values of
the resulting inner products. Therefore, one does not need to
compute such a transformation explicitly for a large class of
nonlinearities. Instead, one only needs to replace the inner
product operator with an appropriate kernel, i.e., a symmetric
hermitian function. The only restriction is that the latter
defines an inner product in some space. A sufficient condition
for this is ensured by Mercer’s theorem [11], which may be
stated as follows: any positive semidefinite kernel can be
expressed as an inner product in some space, where the positive
semidefiniteness of a kernel j:X 3X ! R is determined by
the property X

i, j

ai aj j(xi, xj)� 0,

for all ai, aj 2 R and xi, xj 2 X . Furthermore, theMoore-Aronszajn
theorem [12] states that, to any positive semidefinite kernel j corre-
sponds a unique rkHs, whose inner product h�, �iH, usually called
reproducing kernel, is j itself.

The one-to-one correspondence between rkHs and positive
semidefinite functions has proved to be quite useful in numer-
ous fields (see [13] and references therein). Since the pioneering
work of Aronszajn [12], reproducing kernels and rkHs formal-
ism have been increasingly used, especially, after being selected
for the resolution of interpolation problems by Parzen [14], Kai-
lath [15], andWahba [16]. An rkHs is a Hilbert space of functions
for which point evaluations are bounded and where the exis-
tence and uniqueness of the reproducing kernel are guaranteed
by the Riesz representation theorem. In fact, let H be a Hilbert
space of functions defined on some compact X , for which the

evaluation w(x) of the function w 2 H is bounded for all x 2 X .
By this theorem, there exists a unique function /(x) 2 H such
as w(x) ¼ hw,/(x)iH. Also denoted j( � , x), this function has the
following popular property:

j(xi , xj) ¼ h/(xi),/(xj)iH, (5)

for any xi, xj 2 X . Moreover, the distances can be easily eval-
uated using the kernel trick, since the distance between two ele-
ments can be given using only kernel values, with

k/(xi)� /(xj)k2H ¼ h/(xi)� /(xj),/(xi)� /(xj)iH
¼ j(xi, xi)� 2j(xi, xj)þ j(xj, xj), (6)

where k � kH denotes the norm in the rkHs.
The inherent modularity of reproducing kernels allows scaling-

up linear algorithms into nonlinear ones, adapting kernel-based
machines to tackle a large class of nonlinear tasks. Kernels are
commonly defined on vectorial spaces, X endowed with the
Euclidean inner product hxi, xji ¼ x>i xj and the associated norm
kxik. They can be easily adapted to operate on images, e.g., in
face recognition or image denoising. They are not restricted to
vectorial inputs but can be naturally designed to measure simi-
larities between sets, graphs, strings, and text documents [9]. As
illustrated in Table 1, most of the kernels used in the machine-
learning literature can be divided into two categories: projective
kernels are functions of inner product, such as the polynomial
kernel, and radial kernels (also known by isotropic kernels) are
functions of distance, such as the Gaussian kernel. These ker-
nels implicitly map the data into a high-dimensional space, even
infinite dimensional for the latter.

THE REPRESENTER THEOREM
In machine learning, inferences are focused on the estimation of
the structure of some data, based on a set of available data. Given
n observations, x1, x2, . . . , xn, and eventually the corresponding
labels, y1, y2, . . . , yn, one seeks a function that minimizes a fitness
error over the data, with some control of its complexity (i.e., func-
tional norm). To this end, we consider the rkHs associated to the
reproducing kernel as the hypothesis space from which the opti-
mal is determined. The rkHs associated to j can be identified,
modulo certain details, with a space of functions defined by a
linear combination of the functions /(x1), /(x2), . . . ,/(xn). Its
flexibility efficiently allows for solving optimization problems,
owing to the (generalized) representer theorem. Originally
derived by Kimeldorf and Wahba for splines in [17], it was
recently generalized to kernel-based machine learning in
[18], including SVM and kernel PCA, as follows in Theorem 1.

THEOREM 1 (REPRESENTER THEOREM)
For any function w 2 Hminimizing a regularized cost function
of the form

Xn
i¼1

f
�
yi,wðxi)

�þ g g(kwk2H),

[TABLE 1] COMMONLY USED KERNELS INMACHINE
LEARNING, WITH PARAMETERS c >0,p˛N1, AND r>0.

KERNELS EXPRESSIONS

PROJECTIVE
MONOMIAL (hxi , xji)p
POLYNOMIAL (c þ hxi , xji)p
EXPONENTIAL exp (hxi , xji=2r2)
SIGMOID (PERCEPTRON) tanh (hxi , xji=rþ c)

RADIAL
GAUSSIAN exp (� kxi � xjk2=2r2)
LAPLACIAN exp (� kxi � xjk=2r2)
MULTIQUADRATIC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxi � xjk2 þ c

q
INVERSE MULTIQUADRATIC 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxi � xjk2 þ c

q
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with f ( � , � ) some loss function and g( � ) a strictly monotonic
increasing function on Rþ, can be written as an image expan-
sion in terms of the available data, namely,

w ¼
Xn
i¼1

ai /(xi): (7)

This theorem shows that, even in an infinite-dimensional
rkHs, one only needs to work in the subspace spanned by the n
images of the training data.

Before we proceed further, we examine the effectiveness of
this theorem on two machine-learning techniques: first, con-
sider the kernel PCA where the projected variance is maximized,
namely w1,w2, . . . ,wk ¼ argmaxw (1=n)

P
i jhxi,wij2, under

the orthonormality constraint hw‘,w‘0 iH ¼ d‘‘0 for all ‘, ‘0 ¼
1, 2, . . . , k. As derived in the introductory example, one only
needs to solve the eigenproblem (3), involving only n unknowns
for each principal axes. These unknowns correspond to the
weighting coefficients in the expansion (7). Second, we consider
a regression problem known as ridge regression. In this case,
the mean squared error is minimized, with

min
w

1
n

Xn
i¼1

jyi � w(xi)j2 þ gkwk2H, (8)

where the first term is the fitness error while the second one
controls the complexity of the solution (known as Tikhonov
regularization). By substituting (7) into (8), we get the optimi-
zation problem

min
a

ky� Kak2 þ g a>Ka,

with a ¼ ½a1 a2 � � � an�> and y ¼ ½y1 y2 � � � yn�>. The optimal
weighting coefficients are obtained by solving the linear system

(K þ gI) a ¼ y, (9)

where I is the identity matrix.
Such models as a sum of basis functions have been extensively

studied in the literature, for instance, in interpolation problems
[19], and more recently, in machine learning [20]. To illustrate
this theorem, take for instance, the Gaussian kernel investigated
in [21] for interpolation in two dimensions (2-D). For this kernel,
we can think about the map /(xi): xi 7! exp (� k� �xik2=2r2)
that transforms each input data into a Gaussian bump centered
on that point. Clearly, the representer theorem (Theorem 1)
states that the optimal solution is a linear combination of
Gaussians centered on the available input data. However, it is
well known that the sum of Gaussians centered at different
points cannot be written as a single Gaussian. Thus, the solu-
tion w in (7) cannot be a Gaussian sitting on some arbitrary
data; in other words, it is not a valid image of some x 2 X ,
using the map /( � ) associated to the Gaussian kernel. Finding
an input x� whose image can approximate the function w is the
preimage problem.

SOLVING THE PREIMAGE PROBLEM
A problem is ill posed if at least one of the following three con-
ditions that characterize the well-posed problems in the sense
of Hadamard is violated: 1) a solution exists, 2) it is unique, and
3) it continuously depends on the data (also known as stability
condition). Unfortunately, identifying the preimage is gener-
ally an ill-posed problem. This is an outcome of the higher
dimensionality of the feature space compared with the input
space. As a consequence, most elements of w in the rkHs might
not have a preimage in the input space, i.e., there may not exist
an x� such that /(x�) ¼ w. Moreover, even if x� exists, it may
not be unique. To circumvent this difficulty, one seeks an
approximate solution, i.e., x� whose map /(x�) is as close as
possible to w.

Consider a pattern w in the feature spaceH, obtained by any
kernel-based machine, e.g., a principal axe or a denoised pattern
obtained from kernel PCA. By virtue of Theorem 1, let w ¼Pn

i¼1 ai /(xi). The preimage problem consists of the following
optimization problem

x� ¼ argmin
x2X

���Xn
i¼1

ai /(xi)� /(x)
���2
H
: (10)

Equivalently, from the kernel trick, x� minimizes the objective
function

N(x) ¼ j(x; x)� 2
Xn
i¼1

ai j(x; xi), (11)

where the term independent of x has been dropped.
As opposed to this functional formalism, one may also adopt a

vectorwise representation, with elements in the rkHs given by their
coordinateswith respect to an orthogonal basis. Taking, for instance,
the basis defined by the kernel PCA, as given in (4), each w 2 H is
represented vectorwise with ½hw,w1i hw,w2i � � � hw,wki�>, thus
defining a k-dimensional representation. In such a case, the
Euclidean distance between the latter and the one obtained
from the image of x� is minimized. This is essentially a classical
dimensionality-reduction problem, connecting the preimage
problem to the historical evolution of dimensionality-reduc-
tion techniques. This is emphasized next, providing a survey
on a large variety of methods.

THE EXACT PREIMAGE WHEN IT EXISTS
Suppose that there exists an exact preimage ofw, i.e., x� such that
/(x�) ¼ w, then the optimization problem in (10) results into
that preimage. Furthermore, the preimage can be easily com-
puted when the kernel is an invertible function of hxi , xji, such as
some projective kernels including the polynomial kernel with
odd degree and the sigmoid kernel (see Table 1). Let h:R ! R

define the inverse function such that h(jðxi; xj)Þ ¼ hxi, xji. Then,
given any orthonormal basis in the input space fe1, e2, . . . , eNg,
every element x 2 X can be written as

x ¼
XN
j¼1

hej, xi ej ¼
XN
j¼1

h(jðej, x)
�
ej:
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As a consequence, the exact pre-
image x� of some pattern w ¼Pn

i¼1 ai /(xi), namely /(x�) ¼ w,
can be expanded as

x� ¼
XN
j¼1

h
�Xn

i¼1

ai jðej, xi)
�
ej:

Likewise, when the kernel is an invertible function of the distance,
such as radial kernels, a similar expression can be derived by using
the polarization identity 4 hx�, eji ¼ kx� þ ejk2 � kx� � ejk2 [22].

Clearly, such a simple derivation for the preimage is only
valid under the crucial assumption that the preimage x� exists.
Unfortunately, for a large class of kernels, there are no exact pre-
images. Rather than seeking the exact preimage, we consider an
approximate preimage by solving the optimization problem in
(10). In what follows, we present several strategies for solving
this problem. We first review the techniques based on classical
optimization schemes and then present learning-based techni-
ques by incorporating additional prior information.

GRADIENT DESCENT TECHNIQUES
Gradient descent is one of the simplest optimization techniques.
It requires computing the gradient of the objective function
(11), denoted asrxN(x�). In its simplest form, the current guess
x�t is updated into x

�
tþ1 by stepping into the direction opposite to

the gradient, with

x�tþ1 ¼ x�t � gt rx N(x�t ),

where gt is a step size parameter, often optimized using a line-
search procedure. As an alternative to the gradient descent, one
may usemore sophisticated techniques, such as Newton’smethod.
Unfortunately, the objective function is inherently nonlinear
and clearly nonconvex. Thus, a gradient descent algorithm
must be run many times with several starting values, hoping
that a feasible solution will be among the local minima obtained
over the runs.

FIXED-POINT ITERATION METHOD
The structure of the kernel functions provides useful insights to
derive more appropriate optimization techniques beyond classi-
cal gradient descent. More precisely, the gradient of expression
(11) has a closed-form expression for most kernels. By setting
this expression to zero, this greatly simplifies the optimization
scheme, resulting in a fixed-point iterative technique. Taking
for instance the Gaussian kernel [7], the objective function in
(11) becomes

�2
Xn
i¼1

ai exp (�kx � xik2=2r2),

with its gradient

rxN(x) ¼ � 2
r2
Xn
i¼1

ai exp (�kx � xik2=2r2) (x � xi):

We get the preimage by setting
this gradient to zero, which
results in a fixed-point iterative
expression

x�tþ1 ¼
Pn

i¼1 ai j(x
�
t , xi) xiPn

i¼1 ai j(x
�
t , xi)

,

with j(x�t , xi) ¼ exp (� kx�t � xik2=2r2). Similar expressions
can be derived for most kernels, such as the polynomial kernel
of degree p [23] with

x�tþ1 ¼
Xn
i¼1

ai
hx�t , xii þ c
hx�t , x�t i þ c

 !p�1

xi:

Unfortunately, the fixed-point iterative technique still suffers
from local minima and tends to be unstable. The numerical
instability especially occurs when the value of the denominator
decreases to zero. To prevent this situation, a regularized solu-
tion can be easily formulated, as studied in [24].

An interesting fact about the fixed-point iterative method
is that the resulting preimage lies in the span of the available data,
taking the form x� ¼Pi bi xi for some coefficients b1, b2, . . . , bn
to be determined. Thus, the search space is controlled, as opposed
to gradient-descent techniques that explore the entire space. We
further exploit information from available training data and their
mapped counterparts, as discussed later.

LEARNING THE PREIMAGE MAP
To find the preimage map, a learning machine is constructed,
with training elements from the feature space and estimated val-
ues in the input space, as follows: we seek to estimate a function
C� with the property that C�(/ðxi)Þ ¼ xi, for i ¼ 1, 2, . . . , n.
Then, ideally, C�(w) should give x�, the preimage of w. To make
the problem computationally tractable, two issues are consid-
ered in [25] and [26]. First, the function is defined on a vector
space. This can be done by representing vectorwise any w 2 H
with ½hw,w1i hw,w2i � � � hw,wki�>, using an orthogonal basis
obtained from kernel PCA. Second, the preimage map C� is
decomposed into dim (X ) functions to estimate each compo-
nent of x�. From these considerations, we seek functions
C�
1,C

�
2, . . . ,C

�
dim (X ), with C�

m:R
k ! R. Each of these functions

is obtained by solving the optimization problem

C�
m ¼ argmin

C

Xn
i¼1

f (½xi�m;Cðw)
�þ g g(kCk2),

where f ( � , � ) is some loss function and ½��m denotes the mth
component operator. By taking for instance the distance as a
loss function, we get

C�
m ¼ argmin

C

1
n

Xn
i¼1

��½xi�m � C(w)
��2 þ g kCk2:

This optimization problem can be easily solved by a matrix-
inversion scheme in analogy to the ridge-regression problem (8)

THE STRUCTURE OF THE KERNEL
FUNCTIONS PROVIDES USEFUL
INSIGHTS TO DERIVEMORE
APPROPRIATE OPTIMIZATION

TECHNIQUES.
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and its linear system (9). This
learning approach is further
investigated in the literature,
incorporating neighborhood
information [27] and regulari-
zation with a penalized learn-
ing [28]. All these methods are
based on a set of available data in the input space and the associ-
ated images in the rkHs. The method discussed next carries this
concept further by exploring pairwise distances in both spaces.

MULTIDIMENSIONAL SCALING-BASED TECHNIQUES
As illustrated in the earlier preimage-learning approach, the pre-
image map seeks data in the input space based on their associated
images in the rkHs. Essentially, this is a low-dimensional embed-
ding of objects from a high-dimensional space. This problem has
received a lot of attention in multivariate statistics under the
framework of multidimensional scaling (MDS) [29]. MDS techni-
quesmainly embed data in a low-dimensional space by preserving
pairwise distances. This approach has been applied with success
to solve the preimage problem [23]. Consider each distance in the
rkHs di ¼ kw� /(xi)kH and its counterpart in the input space
kx� � xik. Ideally, these distances are preserved, namely

kx� � xik2 ¼ kw� /(xi)k2H, (12)

for every i ¼ 1, 2, . . . , n. It is easy to verify that if there exists an i
such thatw ¼ /(xi), then we get the preimage x� ¼ xi (Figure 3).

One way to solve this problem is to minimize the mean-
square error between these distances, with

x� ¼ argmin
x

Xn
i¼1

kx � xik2 � kw� /(xi)k2H
��� ���2:

To solve this optimization
problem, a fixed-point iteration
method is proposed by setting
the gradient of the aforemen-
tioned expression to zero, result-
ing in the expression

x� ¼
Pn

i¼1(kx� � xik2 � d2i ) xiPn
i¼1(kx� � xik2 � d2i )

:

Another approach to solve this problem is to separately con-
sider the identities (12), resulting in n equations

2hx�, xii ¼ hx�, x�i þ hxi, xii � d2i ,

for i ¼ 1, 2, . . . , n. In these expressions, the unknown also
appears on the right-hand side, with hx�, x�i. This unknown
quantity can be easily identified in the case of centered data,
since taking the average of both sides results in

hx�, x�i ¼ 1
n

Xn
i¼1

d2i � hxi , xii
� �

:

Let � be the vector having all its entries equal to (1=n)
Pn

i¼1

(d2i � hxi , xii) then, in matrix form, we have

2X>x� ¼ diag(X>X)� d21 d
2
2 � � � d2n

	 
>þ�,

whereX ¼ ½x1 x2 � � � xn� and diag( � ) is the diagonal operator with
diag(X>X) the column vector with entries hxi, xii. The unknown
preimage is obtained using the least-squares solution, namely

x� ¼ 1
2
(XX>)�1X diagðX>X)� ½d21 d22 � � � d2n�>

� �
,

ψ

?

φ (·)

x ∗

d1
d2

d3

dn

δ2

δn

δ3

δ1

χ

(a) (b)

H

[FIG3] Schematic illustration of theMDS-based technique where the preimage is identified from pairwise distances in both (a) input
and (b) feature spaces.

AN INTERESTING FACT ABOUT FIXED-
POINT ITERATIVEMETHOD IS THAT

THE RESULTING PREIMAGE LIES IN THE
SPAN OF THE AVAILABLE DATA.
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where the term (XX>)�1X� becomes zero, thanks to the
assumption of centered data.

To keep this technique tractable in practice, only a certain
neighborhood is considered in the preimage estimation, in the
same spirit as the locally linear embedding scheme in dimen-
sionality reduction [30]. This approach opened the door to a
range of other techniques, borrowed from dimensionality reduc-
tion and manifold learning literature [31].

CONFORMAL MAP APPROACH
In addition to the distance-preserving method of MDS, one may
also propose a preimage method by preserving inner product
measures. Using such a strategy, the angular measure is also
preserved, since x>i xj=kxikkxjk defines the cosine of the angle
between xi and xj in the Euclidean input space. For this reason it
is called the conformal map approach. A recent technique to
solve the preimage problem based on the conformal map has
been presented in [32]. To this end, a coordinate system in the
rkHs is constructed with an isometry with respect to the input
space. We emphasize the fact that the model is not coupled
with any constraint on the coordinate functions, as opposed to
the orthogonality between the functions resulting from the
kernel PCA.

By virtue of Theorem 1, each of the n coordinate functions
can be written as a linear expansion of the available images,
namely W‘ ¼

Pn
i¼1 h‘, i /(xi), for ‘ ¼ 1, 2, . . . , n, with unknown

weights to be determined, rearranged in a matrix H. There-
fore, the coordinates of any element of the rkHs can be
obtained by a projection onto these coordinate functions,
thus any /(xi) can be represented with the n coordinates in
Wxi ¼ ½hW1,/(xi)i hW2,/(xi)i � � � hWk,/(xi)i�>. Ideally, the inner
products are preserved in both coordinate system and Euclidean
input space, specifically

W>
xi Wxj ¼ x>i xj, (13)

for all i, j ¼ 1, 2, . . . , n. This can be solved by minimizing the fit-
ness error over all pairs,

min
W1, ...,Wn

Xn
i, j¼1

��x>i xj �W>
xiWxj

��2 þ g
Xn
‘¼1

kW‘k2H,

where the second term incorporates regularization. This can be
written in matrix form as

min
H

1
2
kX>X � K H>HKk2F þ g tr(H>HK),

where tr( � ) denotes the trace of a matrix and k � kF the Frobe-
nius norm, i.e., the root of sum of squared (absolute) values
of all its elements, or equivalently kMk2F ¼ tr(M>M). By tak-
ing the derivative of this expression with respect to H>H,
one obtains

H>H ¼ K�1�X>X � gK�1�K�1: (14)

Now we are in a position to determine the preimage of some
w ¼Pn

i¼1 ai /(xi). Its coordinates associated to the system of
coordinate functionsW1,W2, . . . ,Wn are given by

hw,W‘iH ¼
Xn
i, j¼1

h‘, i aj j(xi, xj),

for ‘ ¼ 1, 2, . . . , n. By preserving the inner products in both
spaces, ideally themodel in (13) can be extended tow, resulting in

X>x� ¼ KH>HKa:

By combining this expressionwith (14), we get the simplified expres-
sionX>x� ¼ (X>X � gK�1) a, whose least square solution is

x� ¼ (XX>)�1X(X>X � gK�1) a:

It is worth noting that this expression is independent of the ker-
nel type under investigation.

Furthermore, this technique can be easily extended to identify
the preimages of a set of elements in rkHs, since the term between
parentheses needs to be computed only once. In fact, this is a
matrix-completion scheme like the one studied in [33]. This cor-
responds to completing an inner-product matrix based on another
Grammatrix, thematrix of kernel values.

SCOPE OF APPLICATION OF THE PREIMAGE PROBLEM
In this section, we present some application examples that
involve solving the preimage problem. Our first experiments
are with kernel PCA on toy data and are mainly intended to
illustrate the preimage problem. Then we provide a compara-
tive study of the several methods presented in this article on
image denoising problem. Finally, we show how the preimage
can be required in other applications beyond kernel PCA. To
this end, we consider a problem of autolocalization of sensors
in wireless sensor networks.

SOME APPLICATIONS OF
KERNEL PCA WITH PREIMAGE

FEATURE EXTRACTION
The first illustration considered here is the use of kernel PCA on
synthetic data to provide a visual illustration of PCA versus kernel
PCA for feature extraction. The data distribution takes the form of a
ring in 2-D, with an inner diameter of two and an outer diameter of
three. Within this region, n ¼ 600 training data were generated, as
illustrated in Figure 4 with blue dots. To extract the most relevant
feature, twomethods were used: on the one hand, the conventional
PCA and on the other hand kernel PCA with a preimage step. The
PCA technique provided linear axes by solving the eigenvector
problem and thus did not capture the circular shape of the data.
This is illustrated by projecting the data onto the first principal axis,
given by red curve in Figure 4(a). The kernel PCAwas applied using
a Gaussian kernel with bandwidth r ¼ 2, the principal axes being
defined by a sumof nGaussian functions in an infinite-dimensional
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feature space. A preimage method was required to derive the axes,
or representations of these axes, within the input space. As shown
in Figure 4(b), this technique captured the nonlinear feature in the
original space.

As described at the beginning of this article, when we intro-
duced the preimage problem with the Gaussian kernel, each
data is mapped into a Gaussian bump centered around it. By tak-
ing the sum of these Gaussians with some optimized weighting
coefficients, we get the principal distribution whose mean, if it
exists, provides the preimage. It is worth noting that the defini-
tion of a mean only exists and makes sense for Gaussian like
curves and not for a sum of Gaussians centered at different
points. A schematic illustration of the preimage problem is
given in Figure 5, taking only a (unidirectional) radial cut in the
ring-distributed data. The data obtained by solving the preimage
problem can be interpreted as the center of the distribution
Gaussian that best approximates the sum of Gaussians.

In this application, a fixed-point iterative technique was used.
Next, we give a comparative study of several techniques given in
this article by considering the image-denoising problem.

IMAGE DENOISING
In this section, we illustrate the results obtained in a problem of
real-image denoising, using three techniques: the fixed-point itera-
tive method, MDS-based technique, and conformal map approach.
The images consist of the modified National Institute of Standards
and Technology (NIST) database of handwritten digits [34], corre-
sponding to handwritten digits, from 0 to 9, in (almost) binary 28-
by-28 pixels. From a machine-learning point of view, each image
can be represented as a point in a 28 3 28 dimensional space. The
original images were corrupted by adding a zero-mean white Gaus-
sian noise with variance 0.2. In the training stage, a set of 1,000
images, 100 of each digit, were used to train the kernel PCA, retain-
ing only 100 leading principal axes. We used the Gaussian kernel
for the three algorithms, with the bandwidth set to r ¼ 105.

To illustrate the ability of this method for image denoising,
another set of ten images, one for each digit, was considered

under the same noise conditions. These images are illustrated in
Figure 6(a), with the results obtained with the (b) fixed-point
iterative, (c) MDS-based, and (d) conformal methods. For such
applications, the fixed-point iterative algorithm was found to be
inappropriate, even with a large number of iterations (here
10,000 iterations were used). To take advantage of prior knowl-
edge, the same training data set was used for learning the reverse
map. Realistic results were obtained using the MDS-based method.
It is obvious that the conformal algorithm achieved better denoised
results. For this simulation, the regularization parameter was
set to g ¼ 10�9.

In an attempt to provide a measure of computational require-
ments, we considered the (average) total CPU time of each
algorithm. These algorithms were implemented on a MATLAB
running on a MacBook Pro Duo Core to offer a comparative
study. With 10,000 iterations, the fixed-point iterative algorithm
required a total CPU time of up to 1 h. The MDS-based and con-
formal algorithms required 5 min and 1.5 s, respectively.

(a)

(b)

(c)

(d)

[FIG6] Application to handwritten digit denoising with kernel
PCA, using several preimagemethods presented in this article.
(a) Ten digits corrupted by noise. (b) Fixed-point iterative
method. (c) MDS-based method. (d) Conformal method.

[FIG5] Schematic illustration of the preimage problemwith the
Gaussian kernel, where the profile corresponds to a radial cut
in the ring-distributed data. From the sum of Gaussians (red
curve), the preimage corresponds to the mean value of the
distribution (blue dots).

(a) (b)

[FIG4] Denoising data distributed on a ring, using (a) classical
PCA and (b) kernel PCAwith preimage. The extracted feature is
(a) linear and (b) circular.
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AUTOLOCALIZATION IN
WIRELESS SENSOR NETWORKS
With recent technological advances in both electronics and
wireless communications, low-power and low-cost tiny sen-
sors have been developed for monitoring physical phenomena
and tracking applications. Densely deployed in the inspected
environment with efficiently designed distributed algorithms,
wireless ad hoc networks seem to offer several opportunities.
They were successfully employed in many situations, ranging
frommilitary applications such as battleground supervision to
civilian applications such as habitat monitoring and health-
care surveillance (see [35], [36] and references therein). While
these sensors are often randomly deployed, e.g., for monitor-
ing inhospitable habitats and disaster areas, information cap-
tured by each sensor remains obsolete as long as it stays
unaware of its location. Implementing a self-localization device,
such as a global positioning system receiver, at each sensor
device may be too expensive and too power hungry for the
desired application with battery-powered devices. As a conse-
quence, only a small fraction of the sensors may be location
aware, the so-called anchors or beacons. The other sensors have
to estimate their locations by exchanging some information
with its neighbors.

For this purpose, each sensor determines a ranging (dis-
tance) with other sensors, from intersensor measurements such
as the received signal strength indication (RSSI), the connectiv-
ity, the hop count, and the time difference of arrival. Most meth-
ods used for autolocalization in sensor networks are based on
either MDS techniques or semidefinite programming (for a sur-
vey, see [37] and [38]), identifying a function that links the rang-
ing between sensors to their locations. However, if the data are
not intersensor distances or are linked to coordinates by an
unknown nonlinear function, e.g., using the RSSI measure-
ments or the estimated covariance sensor data [39], linear tech-
niques such as MDS and PCA fail to accurately estimate the
locations. Once again, the kernel machines provide an elegant
way to overcome this drawback.

Here, we describe the method proposed in [40]. The main
idea can be described in three stages. In the first stage, we
construct the reproducing kernel and its associated rkHs
that best describes the anchor pairwise similarities. In the
second stage, a nonlinear manifold is designed from similar-
ities between anchor–sensor measurements by applying the
kernel PCA technique. The final stage consists of estimating
the coordinates of nonanchor sensors by applying a preimage
technique on their projections onto the manifold. Next, we
describe these three stages before presenting the experimen-
tal results.

Consider a network of N sensor nodes, with n location-
aware anchors and N � n sensors of unknown location, living
in a p-dimensional space, e.g., p ¼ 2 for localization in a plane.
Let xi 2 Rp be the coordinates of the ith sensor, rearranged
such that indices i ¼ 1, 2, . . . , n correspond to anchors. Let
~K(i, j) be the intersensor similarity between sensors i and j,
such as RSSI.

KERNEL SELECTION FROM
INTERANCHOR SIMILARITIES
As a model of similarity measurements, the appropriate
reproducing kernel should be chosen and tuned up, which
allows a physical meaning of the results obtained from the
kernel PCA (next stage). The alignment criterion [41] pro-
vides a measure of similarity between the reproducing kernel
and target function, e.g., between a Gaussian kernel and RSSI
measurements. Maximizing the alignment A(K , ~K) provides
the optimal-reproducing kernel, faithful to the interanchor
measurements, where

A(K , ~K) ¼ hK , ~KiFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK ,KiFh~K , ~KiF

q ,

with h�, �iF as the Frobenius inner product between two matri-
ces. Taking, for instance, the Gaussian kernel, the optimization
problem is reduced to finding the optimal bandwidth. In prac-
tice, this optimization problem is solved at each anchor, using
only the information from its neighborhood.

KERNEL PCA UPON ANCHORS
After identifying the reproducing kernel adapted to the mea-
surements, a kernel-PCA approach is applied to provide the most
relevant subspace of the associated rkHs. Classical kernel PCA is
computed by a diagonalization scheme, which may be computa-
tionally expensive for in-network processing. An alternative
approach can be done using an iterative scheme, such as the ker-
nel-Hebbian algorithm [42] (we refer the reader to [40] for its
implementation in wireless sensor networks).

PREIMAGE FOR LOCATION ESTIMATION
For each sensor, we represent its image in the rkHs associ-
ated to the kernel, maximizing the alignment criterion. The
image is projected onto the manifold, obtained using kernel
PCA with anchor pairwise similarities. The problem of esti-
mating the coordinates from that representation is the pre-
image problem.

EXPERIMENTAL RESULTS
The first batch of experiments was carried out on simulated
measurements. For this purpose, we considered a network of
sensors measuring some physical phenomena, e.g., tempera-
ture, atmospheric pressure, or luminance. In a static field, we
assumed that measurements were jointly generated from a
normal distribution, with decreasing correlations between
measurements as a function of the distance between sensors.
This information was used as a local similarity measure
between sensors [39]. More precisely, we considered the
spherical model, commonly used in environmental and geo-
logical sciences [43], defined by a covariance of the form
f(kxi � xjk) with

f(u) ¼ 1� 3
2d uþ 1

2d3 u
3 for 0 � u � d;

0 for d5u,

�
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where d denotes the cutoff distance, and fixed to d ¼ 60 in our
experiments. The profile of the spherical model is illustrated in
Figure 7. The experiments consisted of 100 sensors, from which
20 were anchors with known locations, randomly spread over a
100-by-100 square region. For each sensor, 200 measurements
were collected, and the Gaussian kernel was considered. Figure 8
illustrates the localization results obtained with this method.

In a second experiment, real measurements of RSSI were
collected from an indoor experiment at the Motorola facility in
Plantation, Florida. The environment is a 14-by-13 m office area,
partitioned by cubicle walls (height ¼ 1.8 m). The network con-
sisted of 40 unknown-location sensors and four anchors near the
corners. The experimental settings are described more in detail
in [44] (see also http://www.eecs.umich.edu/~hero/localize/). For
each sensor i, we collected the RSSI associated to it in a 44-dimen-
sional vector, denoted by ui. The intersensor similarity between
sensors is given by thematrix ~K , defined between sensors i and j by

~K(i, j) ¼ exp
��kui � ujk2=200

�
:

The Gaussian kernel was considered, with its bandwidth optimized
by maximizing the alignment. The proposed method gives a root-
mean-square location error over the 40 sensors of 2.13 m each.
This should be compared to the maximum-likelihood estimator
studied in [44] (that turned out to be biased), having a root-mean-
square location error of 2.18m.

FINAL REMARKS
This article presented the preimage problem inmachine learning,
providing an overview of the state-of-the-art methods and ap-
proaches for solving such a problem. Our aim was to show how
this problem is intimately related to dimensionality reduction
issues, borrowing and enhancing ideas derived from dimensional-
ity reduction and manifold learning. Throughout this article, we
studied this problem for kernel PCA and provided a comparative
study of several methods for image denoising. We extended the
range of application of the preimage problem to another context,
sensor autolocalization in wireless sensor networks.

By interpreting the processing in the feature space to the
original input space, this strategy opens the way to a range of
diverse signal-processing problems. These problems are nonlin-
ear kernel-based formulations of classical signal processing
methods, including the independent component analysis [45]
and the Kalman filter [46]. Another area of application is the pre-
image problem on structured spaces, including biological sequence
analysis in bioinformatics [47] and string analysis in natural
language [48]. In the latter, the authors derived a preimage solu-
tion for a string kernel, using a graph-theoretical formulation. All
these promising areas of application of the preimage problem open
an avenue for future work.
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