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Abstract— This paper provides new insights into on-line non-
linear sparse approximation of functions based on the coherence
criterion. We revisit previous work, and propose tighter bounds
on the approximation error based on the coherence criterion.
Moreover, we study the connections between the coherence
criterion and both the approximate linear dependence criterion
and the principal component analysis. Finally, we derive a kernel
normalized LMS algorithm based on the coherence criterion,
which has linear computational complexity on the model order.
Initial experimental results are presented on the performance of
the algorithm.

I. INTRODUCTION

Over the last decades, sparse approximation of functions has
become a commonly used tool for a wide variety of problems
involving dynamic systems. Although most of the work done
in this field applies linear methods, many situations require
nonlinear processing of data. This can be done using the for-
malism of reproducing kernel Hilbert spaces (RKHS). Initially
proposed in [1], [2], the latter has gained wide popularity
in recent years with kernel-based methods such as support
vector machines. A common characteristic of these techniques
is that they deal with series expansions whose size equals the
number of training data, making them unsuitable for on-line
applications. To overcome this, sparsification techniques have
been proposed [3], [4] to control the model order. In spite of
an effective order control, these techniques suffer from high
computational complexity.

In [5], we presented a framework for on-line nonlinear
sparse approximation of functions based on RKHS. The spar-
sification technique has only linear complexity in the order
of the model. It is based on the coherence parameter, a fun-
damental quantity for characterizing dictionaries of functions
[6], [7]. This paper extends that framework by providing new
properties of the coherence criterion and connections to other
sparsification techniques. Moreover, we present the kernel nor-
malized LMS (KNLMS) adaptive filtering algorithm, whose
complexity is linear in the model order, as opposed to the
kernel recursive least-squares (KRLS) algorithms proposed in
[4], [5] which have a quadratic complexity.

This paper is organized as follows. In Section 2, we outline
some basic principles of nonlinear filtering in RKHS. In
Section 3, we present the coherence parameter. Its properties
and connections to other sparsification criteria are investigated
in Section 4. Finally, we propose the new coherence criterion
based KNLMS algorithm for on-line nonlinear approximation
of functions, and we evaluate its performance.

II. FOUNDATIONS OF NONLINEAR FILTERING IN RKHS
Let U be a compact subspace of IRp, κ : U × U → IR a

reproducing kernel, and (H, 〈·,·〉H) the induced RKHS with
its inner product. The reproducing property states that any
function ψ(·) of H can be evaluated at any point ui of U
using ψ(ui) = 〈ψ(·), κ(·,ui)〉H, where κ(·,ui) is a positive
definite kernel that takes u` into κ(u`,ui). By setting H
as the hypothesis space, we consider as a cost function the
squared error between the model outputs ψ(ui) and the desired
responses di, that is,

n
∑

i=1

(di − ψ(ui))
2. (1)

It is well known from the representer theorem [2] that the
solution to such optimization problems can be expressed as a
kernel expansion in terms of available training data, namely,

ψ(·) =

n
∑

j=1

αj κ(·,uj).

The optimization problem is then reduced to the dual problem
of determining α = [α1 . . . αn]t such that

min
α

‖d − Kα‖2,

where K denotes the Gram matrix whose (i, j)-th entry is
κ(ui,uj), and d = [d1 . . . dn]t. Solution to this problem
is given by α = K

†
d, where K

† is the pseudo-inverse
of K. Since the model order is equal to the number n of
available data ui, this approach cannot be considered for on-
line applications.

To overcome this barrier, one can control the order of the
kernel expansion by considering, at each time instant n, the
reduced model

ψn(·) =
∑

ωj∈Jn

αn,j κ(·,uωj
), (2)

where Jn is a subset of m indices of {1, . . . , n}. The m
kernel functions κ(·,uωj

) form the dictionary Dm. Let PDm

denote the projection operator onto the space they span. A
commonly used technique to select the kernel functions in (2)
is the approximate linear dependence (ALD) criterion [4]. At
each time instant n, the kernel function κ(·,un) is included
in the dictionary Dm if it satisfies the condition

min
γ

‖κ(·,un) −
∑

ωj∈Jn−1

γj κ(·,uωj
)‖2

H > ε0, (3)



with κ a unit-norm kernel1, and therefore cannot be rep-
resented, up to a small error, as a linear combination of
previously selected elements. The threshold ε0 determines
the level of sparsity of the model. Solving this problem is,
however, a computationally intensive task since it requires an
m-by-m matrix inversion. We propose making use of another
criterion for model order control, the coherence criterion,
which has linear complexity with respect to m.

III. COHERENCE FOR DICTIONARY ANALYSIS

A. Coherence parameter

The coherence parameter is a fundamental quantity used
to characterize dictionaries for sparse approximation tech-
niques, with dictionaries from union of orthonormal bases [8],
[9], or more recently with arbitrary ones [6], [7]. Let
κ(·,uω1), . . . , κ(·,uωm

) be a dictionary composed of m unit-
norm kernel functions1. Coherence is defined as

µ = max
i6=j

|〈κ(·,uωi
), κ(·,uωj

)〉H| = max
i6=j

|κ(uωi
,uωj

)|,

for all i, j = 1, . . . ,m, and we say that the dictionary is µ-
coherent. Note that the largest absolute off-diagonal entry of
the Gram matrix is equal to zero for orthonormal dictionaries.
In what follows, we demonstrate that the coherence is a
powerful parameter to characterize dictionaries. As a warm
up to proving this result and others that follow, we have the
following result essentially due to [7].

Proposition 1: Consider a µ-coherent dictionary Dm of m
kernel functions. The eigenvalues of its Gram matrix are
greater than or equal to 1 − (m− 1)µ.

Proof: The Geršgorin disk theorem, applied to the
Gram matrix, defines regions that contains its eigenvalues
ν1, . . . , νm. Each eigenvalue νj verifies at least one of the
m inequalities |νj − κ(uωk

,uωk
)| ≤

∑m

i6=k |κ(uωi
,uωk

)|,
for k = 1, . . . ,m. From the definition of coherence and the
normalization condition of κ, we obtain |νj − 1| ≤ (m− 1)µ.
This implies that νj ≥ 1− (m− 1)µ for all j = 1, . . . ,m.

The following proposition gives a sufficient condition for a
set of kernel functions to be linearly independent [5].

Proposition 2: A sufficient condition form kernel functions
to be linearly independent is (m− 1)µ < 1, where µ denotes
their coherence.

Proof: Linear algebra tells us that a set of functions is
linearly independent if, and only if, the eigenvalues of its Gram
matrix are non-zero. From Proposition 1, a sufficient condition
is given by 1 − (m− 1)µ > 0.

New insights on the relationships between the kernel func-
tions of a µ-coherent dictionary are developed next. In par-
ticular, we revisit Proposition 3 in [5] by deriving a tighter
bound on the approximation error of a dictionary element by
the others. The sufficient condition above is obtained by setting
this lower bound to zero.

1This means that κ(uk, uk) = 1 for every uk ∈ U ; otherwise, substitute
κ(·,uk)/

√

κ(uk, uk) for κ(·,uk) in the expression.

B. Relation between elements of a µ-coherent dictionary

We shall now study the problem of approximating an
element of a µ-coherent dictionary by its other elements. After
deriving a new lower bound on the residual error, we compare
this lower bound to the bound proposed in [5].

Proposition 3: Let Dm be a µ-coherent dictionary of m
kernel functions with (m − 1)µ < 1. The squared error
incurred by approximating any element by its other elements
is greater than 1 −

√

(m− 1)µ2/(1 − (m− 2)µ).
Proof: Let PDm−1 denote the projection operator onto the

space spanned by the elements of Dm−1 = {κ(·,uωj
)}m−1

j=1 .
The squared norm of PDm−1κ(·,uωm

) is the maximum, over
all the unit functions ψ(·) that belong to the spanned space,
of the inner product 〈κ(·,uωm

), ψ(·)〉H.
Writing ψ(·) =

∑m−1
i=1 αi κ(·,uωi

)

‖
∑m−1

i=1 αi κ(·,uωi
)‖H

, we then have:

‖PDm−1κ(·,uωm
)‖2

H = max
α

∑m−1
i=1 αi κ(uωi

,uωm
)

‖
∑m−1

i=1 αi κ(·,uωi
)‖H

. (4)

The square of the numerator can be upper-bounded by

(

m−1
∑

i=1

αiκ(uωi
,uωm

)
)2

≤
(

m−1
∑

i=1

|αiκ(uωi
,uωm

)|
)2

≤
m−1
∑

i=1

α2
i

m−1
∑

i=1

|κ(uωi
,uωm

)|2

≤ (m− 1)µ2
m−1
∑

i=1

α2
i ,

where the second inequality follows from Cauchy-Schwartz
inequality, and the last one is due to the definition of coher-
ence. A lower bound on the denominator is found by writing

‖∑m−1
i=1 αiκ(·,uωi

)‖2
H

∑m−1
i=1 α2

i

=
α

t
Kα

‖α‖2
≥ νmin ≥ 1 − (m− 2)µ.

The last inequality follows from proposition 1 applied to the
smallest eigenvalue νmin of K, which is the Gram matrix
of the (m − 1) elements of Dm−1. Finally, combining both
inequalities yields the following lower bound on the squared
norm of the residue

‖(I − PDm−1)κ(·,uωm
)‖2

H

= ‖κ(·,uωm
)‖2

H − ‖PDm−1κ(·,uωm
)‖2

H

≥ 1 −
√

(m− 1)µ2

1 − (m− 2)µ
. (5)

Note that this bound is valid, that is, 1− (m−2)µ > 0, under
condition (m− 1)µ < 1.

The bound (5) is sharp in the sense that it spans the entire
interval ]0, 1], the upper limit being reached for µ = 0 and
the lower one for µ = 1/(m − 1). Once again, we find the
sufficient condition (m − 1)µ < 1 of linear independency.
It refers to the case where there is no element that can be
represented by a linear combination of the others, without
approximation error.
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Fig. 1. Lower bounds on the squared error of approximation, in
dashed-blue for the earlier work [5] and in solid-red for the one
proposed in this paper.

It is sharper than bound 1−
√

(m− 1)µ2/(1 − (m− 1)µ),
implicitly introduced in [6] and derived for filtering with kernel
functions in [5]. This implies that the condition for validity,
which is now (m−1)µ < 1, is less restrictive than the original
condition (m − 1)µ < 1/2 proposed in [5, Proposition 2].
Figure 1 plots these bounds as a function of the size m of the
dictionary, for several values of the coherence parameter µ.

IV. SPARSIFICATION WITH THE COHERENCE CRITERION

On the basis of the above results, we shall now take
advantage of coherence to produce a dictionary of linearly
independent kernel functions. It suffices that the coherence of
the latter does not exceed a given threshold µ0 < 1/(m− 1).
Our sparsification rule consists of including, at each time
instant n, the kernel function κ(·,un) into Dm if

max
ωj∈Jn−1

|κ(un,uωj
)| ≤ µ0. (6)

The level of sparsity of Dm is determined by µ0. Note that
small values induce quasi-orthonormal dictionaries. It has been
shown in [5] that dictionaries determined by this rule are finite.

As shown below, the coherence criterion (6) has direct
connection to other sparsification rules, in particular the ALD
criterion (3) and principal component analysis (PCA). Rela-
tion with the entropy-maximization criterion [10] has been
established in [5], where a lower bound on the entropy of a
µ0-coherent dictionary is derived.

A. The coherence criterion as an ALD criterion

We shall now establish connection between the coherence
criterion (6) and the ALD criterion (3), that is, the relation
between their respective thresholds µ0 and ε0. The lower
bound in proposition 3 directly shows that the kernel functions
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Fig. 2. Squared error bounds of approximating a kernel function from
a µ0-coherent dictionary of size m. The blue region corresponds to
the kernel functions verifying (6), while the red one to its violation.

of a µ0-coherent dictionary Dm satisfy ALD rule with

ε0 = 1 −
√

(m− 1)µ2
0

1 − (m− 2)µ0
.

This result does not provide information about the rejection
process of the coherence rule (6) and, in particular, the
approximation error of discarded kernel functions. Note that
the latter is upper-bounded by

√
ε0 in the case of the ALD

rule. The following proposition states a similar result for the
coherence criterion.

Proposition 4: Let Dm be a dictionary produced by rule (6),
and κ(·,un) a kernel function violating this rule. The squared
approximation error of κ(·,un) by the elements of Dm is
lower than 1 − µ0.

Proof: Consider the projection of κ(·,un) onto the space
spanned by the elements of Dm = {κ(·,uωj

)}m
j=1, and write

its squared error from expression (4) as

‖(I − PDm
)κ(·,un)‖2

H = 1 − max
α

∑m

i=1 αiκ(uωi
,un)

‖∑m

i=1 αiκ(·,uωi
)‖H

≤ 1 − max
ωk∈Jn−1

|κ(uωk
,un)|

‖κ(·,uωk
)‖H

.

The above inequality corresponds to the specific set of coeffi-
cients α1, . . . , αm = 0, except αk = ±1 depending on the sign
of κ(uωk

,un). Since κ(·,un) violates condition (6), we have
maxωj∈Jn−1 |κ(un,uωj

)| > µ0. Combining both inequalities
yields the following expression

‖(I − PDm
)κ(·,un)‖2

H < 1 − µ0

because κ(·,uωk
) is a unit-norm kernel function.

By combining this bound with the one derived in Propo-
sition 3, we conclude the following about approximating a
kernel function with a µ0-coherent dictionary Dm with m
elements. If the coherence rule (6) is verified, κ(·,un) must
be included in the dictionary. Its squared approximation error
exceeds 1−

√

mµ2
0/(1− (m− 1)µ0). If κ(·,un) violates the

coherence rule, it is discarded from the dictionary. Its squared
approximation error is less than 1−µ0. It is worth noting that
the former bound is smaller than the latter, for all µ0 and m.
While these two bounds are reduced to a single one, ε0, with
ALD criterion, they are distinct with the coherence criterion
as illustrated in Figure 2.



B. Connection to kernel-PCA

Our approach, whose main goal is to judiciously select a
subspace spanned by m kernel functions from the original
space of data, can be viewed as a dimensionality reduction
technique. It seems natural now to consider its connection
to kernel principal component analysis (kernel-PCA) [11], an
elegant nonlinear extension of the mostly used dimensional
reduction technique, the principal component analysis (PCA).

PCA consists of determining principal axes that capture the
highest variance in the data, that is, useful information as
opposed to noise. These principal axes are the eigenvectors Ψk

associated with the largest eigenvalues λk of the covariance
matrix R of data, which means that R Ψk = λkΨk. There
exists a dual formulation of PCA involving only the inner
products of the n training data, the kernel-PCA. The k-th
principal axis is now given by Ψk =

∑n
j=1 βj,kκ(·,uj), where

the βj,k’s are the components of the k-th eigenvector of the
Gram matrix K. To have unit-norm principal axes, expansion
coefficients must be normalized such that

∑n

j=1 β
2
j,k = 1/nλk

with λk = νk/n.

Proposition 5: Let Dm be a dictionary produced by coher-
ence rule (6) from n kernel functions. Let Ψk denote the k-th
principal axis of these n kernel functions with eigenvalue λk.
The squared approximation error of eigenvector Ψk by the m
elements of Dm is lower than (1 − µ0)/λk.

Proof: To prove this, we need to upper bound the norm
of the residue ‖(I−PDm

)Ψk‖H. Let the κ(·,uωj
)’s be the el-

ements of Dm. From the expansion Ψk =
∑n

j=1 βj,kκ(·,uj),
we can write

‖(I − PDm
)Ψk‖H =

∥

∥

n
∑

j=1

βj,k(I − PDm
)κ(·,uj)

∥

∥

H

≤
n

∑

j=1

|βj,k| ‖(I − PDm
)κ(·,uj)‖H

=
n

∑

j=1
ωj 6∈Jn

|βj,k| ‖(I − PDm
)κ(·,uj)‖H.

The inequality comes from the generalized triangle inequality,
and the last equality follows from (I − PDm

)κ(·,uωj
) = 0

for all κ(·,uωj
) ∈ Dm. Since the kernel functions in the

right-hand-side of the above expression are discarded from
the dictionary Dm by rule (6), we know from proposition 4
that ‖(I − PDm

)κ(·,uj)‖2
H < 1− µ0. Thus,

‖(I − PDm
)Ψk‖2

H < (1 − µ0)
(

n
∑

j=1
ωj 6∈Jn

|βj,k|
)2

.

The above summation can be upper bounded by

(

n
∑

j=1
ωj 6∈Jn

|βj,k|
)2

≤
(

n
∑

j=1

|βj,k|
)2

≤ n
n

∑

j=1

β2
j,k =

1

λk

,

where the second inequality follows from Cauchy-Schwartz
inequality. The equality is due to normalization in kernel-
PCA. Finally, by substituting this summation into the above
expression, we get

‖(I − PDm
)Ψk‖2

H <
1 − µ0

λk

.

From this upper bound, we conclude that the principal axes
with the largest eigenvalues have small approximation errors.
Then they can be viewed, up to a small error, as belonging
to the space spanned by the elements of the dictionary. The
coherence criterion can therefore be considered as a principal
component technique, which estimates a subspace from obser-
vations without the computational burden of matrix inversion
in both PCA and kernel-PCA algorithms. A similar result is
derived in [4] for dictionaries derived from ALD criterion.
While the latter has a computational complexity which is
quadratic in the size of the dictionary, the coherence criterion
provides a linear complexity.

V. THE KNLMS ALGORITHM WITH THE COHERENCE
CRITERION

In [5], a KRLS algorithm is derived for solving (1) for the
m-order model (2). The KRLS algorithm has a quadratic com-
putational complexity with respect to m. Since the coherence
criterion has a linear computational complexity, it is natural to
propose a filtering algorithm that has a similar complexity. In
this paper, we consider a simple stochastic-gradient method
for solving the optimization problem, the kernel normalized
least-mean-squares (KNLMS).

A. The KNLMS algorithm

Under the principle of minimal disturbance, we reformulate
the optimization problem as follows: at each time instant n, we
seek the coefficient vector αn that sets to zero the a posteriori
error, namely

dn − h
t
nαn = 0, (7)

where hn is an m-by-1 vector whose i-th entry is κ(un,uωi
).

Upon arrival of new data, two cases may occur, depending on
the coherence rule (6).

Case 1. maxj=1...m |κ(un,uωj
)| > µ0

In this case, the kernel function κ(·,un) is not included in the
dictionary. The model coefficients are updated according to
the condition (7). Let us rewrite the a priori estimation error,
defined by en = dn − h

t
nαn−1, as follows:

en = h
t
n(αn − αn−1).

Minimizing en is an under-determined problem with 1 equa-
tion and m variables. Nevertheless, there exists a unique opti-
mal solution in the least-squares sense that can be computed
from the pseudo-inverse of h

t
n. This leads to

αn − αn−1 =
1

‖hn‖2
hnen.



By introducing a step-size control parameter ρ, we obtain the
recursion

αn = αn−1 +
ρ

‖hn‖2
hn

(

dn − h
t
nαn−1

)

. (8)

The choice of an appropriate step-size for achieving optimal
convergence rates is extensively investigated in the adaptive
filtering literature [12].

Case 2. maxj=1...m |κ(un,uωj
)| ≤ µ0

There may be considerable error in representing κ(·,un) by
the kernel functions of the dictionary. Therefore, κ(·,un) must
be included in the dictionary. For this, the model order is
incremented, and both αn and hn are updated to (m + 1)-
by-1 column vectors according

hn = [κ(un,uω1) . . . κ(un,uωm+1)]
t

αn =

[

αn−1

0

]

+
ρ

‖hn‖2
hn

(

dn − h
t
n

[

αn−1

0

])

,

where the recursion is obtained from expression (8) derived
in Case 1.

B. Simulations

As an application, we consider the nonlinear dynamic
system identification problem [3]

yn = 0.5 yn−1un−1 + 0.2 un−1 + 0.05 y2
n−1 + 0.6 u2

n−1

dn = yn + εn

where dn is the observed output, corrupted by a measurement
noise εn sampled from a zero-mean Gaussian distribution with
a standard deviation of 0.1, which corresponds to a signal-to-
noise ratio of about 30%. With an initial condition y1 = 0.1,
data were generated from a control sequence un sampled from
a Gaussian distribution with a standard deviation of 0.1 and
a mean of 0.2. We used these data to estimate a nonlinear
model of the form dn = ψ(dn−1, un−1). We considered the
Gaussian kernel κ(ui,uj) = exp(−‖ui − uj‖2/β0), with
β0 = 0.02, and a step-size ρ of 9× 10−2. Figure 3 illustrates
the convergence behavior of both KNLMS and KRLS, for
different values of threshold µ0. Each curve represents the
average over 100 runs, then smoothed by time averaging over
20 consecutive samples. The mean order of each model, over
these runs, is given in the legend. Note that the sufficient
condition for linearly independent kernel functions is verified.
As expected, KRLS converges faster than KNLMS, but with
a significantly larger computational complexity.

VI. CONCLUSION

This paper considered nonlinear adaptive filtering in RKHS
using coherence as a sparsification criterion. We studied the
approximation problem from a dictionary constructed by this
criterion, and provided new tighter bounds on its approxima-
tion error. We have also connected the coherence criterion to
both the ALD criterion and the PCA technique. Finally, we
presented initial experimental results on the kernel normalized
LMS algorithm applied to nonlinear system identification.
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